If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Visual References

From SKYbrary Wiki

Revision as of 14:31, 29 April 2019 by Integrator2 (talk | contribs) (→‎European Regulations)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Article Information
Category: Controlled Flight Into Terrain Controlled Flight Into Terrain
Content source: Flight Safety Foundation Flight Safety Foundation (FSF)
Content control: EUROCONTROL EUROCONTROL

Description

The phrase 'Required Visual Reference' is used in relation to the transition from control of an aircraft by reference to flight deck instrumentation to control by reference to external visual references alone. Those visual references, including aids, should have been in view for sufficient time for the pilot to have made an assessment of the aircraft position and rate of change of position in relation to the desired flight path. In Category III operations with a decision height the required visual reference is that specified for the particular procedure and operation. (ICAO Annex 6, and PANS-ATM).

The establishment of visual references at the completion of an instrument approach is an important process which determines whether the approach may be continued to landing, or a go-around must be flown.

Note: the vertical or slant view of the ground through broken clouds or fog patches does not constitute an adequate visual reference to conduct a visual approach or to continue an approach below the applicable MDA/H or DA/H.

The section below headed "European Regulations" details what these visual references must be. The remainder of this article deals with the process of transition within the aircraft cockpit.

According to Flight Safety Foundation (FSF) Approach-and-landing Accident Reduction (ALAR) Briefing Note 7.3 — Visual References , "The transition from instrument references to external visual references is an important element of any type of instrument approach."

The briefing note points out that two common Task task-sharing philosophies are common:

  • "Pilot flying-pilot not flying (PF-PNF) task-sharing with differences about the acquisition of visual references, depending on the type of approach and on the use of automation:
    • Nonprecision and Category (CAT) I instrument landing system (ILS) approaches; or,
    • CAT II/CAT III ILS approaches (the captain usually is the PF, and only an automatic approach and landing is considered); and,
  • "Captain-first officer (CAPT-FO) task-sharing, which usually is referred to as a shared approach, monitored approach or delegated-handling approach.

"Differences in the philosophies include:

  • The transition to flying by visual references; and,
  • Using and monitoring the autopilot."

"The task-sharing for the acquisition of visual references and for the monitoring of the flight path and aircraft systems varies, depending on:

  • The type of approach; and,
  • The level of automation being used:
    • Hand-flying (using the Flight Director [FD]); or,
    • Autopilot (AP) monitoring (single or dual AP)."

The briefing note than proceeds to discuss task sharing and other considerations for different types of approach.

European Regulations

AMC1 to IR-OPS CAT.OP.MPA.305(e) and Appendix 1 to EU-OPS 1.430 define the required visual references for continuion of a precision approach or a non-precision approach as follows:

Non-Precision Approach A pilot may not continue an approach below MDA/H unless at least one of the following visual references for the intended runway is distinctly visible and identifiable to the pilot:

(i) Elements of the approach light system;
(ii) The threshold;
(iii) The threshold markings;
(iv) The threshold lights;
(v) The threshold identification lights;
(vi) The visual glide slope indicator;
(vii) The touchdown zone or touchdown zone markings;
(viii) The touchdown zone lights;
(ix) Runway edge lights; or
(x) Other visual references accepted by the Authority.

Precision Approach A pilot may not continue an approach below the Category I decision height ... unless at least one of the following visual references for the intended runway is distinctly visible and identifiable to the pilot:

(i) Elements of the approach light system;
(ii) The threshold;
(iii) The threshold markings;
(iv) The threshold lights;
(v) The threshold identification lights;
(vi) The visual glide slope indicator;
(vii) The touchdown zone or touchdown zone markings;
(viii) The touchdown zone lights; or
(ix) Runway edge lights.

Category II Operations A pilot may not continue an approach below the Category II decision height ... unless visual reference containing a segment of at least 3 consecutive lights being the centre line of the approach lights, or touchdown zone lights, or runway centre line lights, or runway edge lights, or a combination of these is attained and can be maintained. This visual reference must include a lateral element of the ground pattern, i.e. an approach lighting crossbar or the landing threshold or a barette of the touchdown zone lighting.

Category IIIA Operations For Category IIIA operations, and for Category IIIB operations with failpassive flight control systems, a pilot may not continue an approach below the decision height ... unless a visual reference containing a segment of at least 3 consecutive lights being the centreline of the approach lights, or touchdown zone lights, or runway centreline lights, or runway edge lights, or a combination of these is attained and can be maintained.

Category IIIB Operations For Category IIIB operations with fail-operational flight control systems using a decision height a pilot may not continue an approach below the Decision Height ... unless a visual reference containing at least one centreline light is attained and can be maintained.

Accidents and Incidents

The following events on SKYbrary involve lack of visual reference as a factor:

  • S76, Peasmarsh East Sussex UK, 2012 (On 3 May 2012, a Sikorsky S76C operating a passenger flight to a private landing site at night discontinued an initial approach because of lack of visual reference in an unlit environment and began to position for another. The commander became spatially disorientated and despite a number of EGPWS Warnings, continued manoeuvring until ground impact was only narrowly avoided - the minimum recorded height was 2 feet +/- 2 feet. An uneventful diversion followed. The Investigation recommended a review of the regulations that allowed descent below MSA for landing when flying in IMC but not on a published approach procedure.)
  • C30J, en-route, northern Sweden 2012 (On 15 March 2012, a Royal Norwegian Air Force C130J-30 Hercules en route on a positioning transport flight from northern Norway to northern Sweden crossed the border, descended into uncontrolled airspace below MSA and entered IMC. Shortly after levelling at FL 070, it flew into the side of a 6608 foot high mountain. The Investigation concluded that although the direct cause was the actions of the crew, Air Force procedures supporting the operation were deficient. It also found that the ATC service provided had been contrary to regulations and attributed this to inadequate controller training.)
  • A320, Hiroshima Japan, 2015 (On 14 April 2015, a night RNAV(GNSS) approach to Hiroshima by an Airbus A320 was continued below minima without the prescribed visual reference and subsequently touched down 325 metres before the runway after failing to transition to a go around initiated from a very low height. The aircraft hit a permitted ground installation, then slid onto the runway before veering off it and stopping. The aircraft sustained extensive damage and an emergency evacuation followed with 28 of the 81 occupants sustaining minor injuries. The Investigation noted the unchallenged gross violation of minima by the Captain.)
  • B738, Sint Maarten Eastern Caribbean, 2017 (On 7 March 2017, a Boeing 737-800 crew making a daylight non-precision approach at Sint Maarten continued it without having established the required visual reference to continue beyond the missed approach point and then only realised that they had visually ‘identified’ a building as the runway when visibility ahead suddenly improved. At this point the approach ground track was corrected but the premature descent which had inadvertently been allowed to occur was not noticed and only after the second of two EGPWS Alerts was a go-around initiated at 40 feet above the sea.)
  • SH36, vicinity Sint Maarten Eastern Caribbean, 2014 (On 29 October 2014, a Shorts SD 3-60 ceased its climb out soon after take-off and was subsequently found to have descended into the sea at increasing speed with the impact destroying the aircraft. The Investigation found that the aircraft had been airworthy prior to the crash and, noting a dark night departure and a significant authority gradient on the fight deck, concluded that the pilot flying had probably experienced a somatogravic illusion as the aircraft accelerated during flap retraction and made a required left turn. The extent of any intervention by the other pilot could not be determined.)

Related Articles

Further Reading

  • ICAO Doc 4444: PANS-ATM;

Flight Safety Foundation

The Flight Safety Foundation ALAR Toolkit provides useful training information and guides to best practice. Copies of the FSF ALAR Toolkit may be ordered from the Flight Safety Foundation ALAR website