If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Difference between revisions of "Taxiway Collisions"

From SKYbrary Wiki

m (Accidents and Incidents)
 
(20 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
|control_caption  = About SKYbrary
 
|control_caption  = About SKYbrary
 
}}
 
}}
{{Under construction}}
+
 
 
==Description==
 
==Description==
 
An airport is a complex interface between the air and the ground environments, where  access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.
 
An airport is a complex interface between the air and the ground environments, where  access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.
Line 13: Line 13:
 
This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article [[On-Gate Collisions]] provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.
 
This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article [[On-Gate Collisions]] provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.
 
==Occurrences==
 
==Occurrences==
Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:
+
As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:
 
*using an incorrect taxiway
 
*using an incorrect taxiway
 
*failing to stop at a taxiway holding point
 
*failing to stop at a taxiway holding point
 
*failing to stay on the surface movement control radio frequency or ground frequency as appropriate
 
*failing to stay on the surface movement control radio frequency or ground frequency as appropriate
 
*failing to obtain a clearance before entering an area subject to control.
 
*failing to obtain a clearance before entering an area subject to control.
 
  
 
In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:
 
In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:
Line 26: Line 25:
  
 
Most of the remaining occurrences are related to one of the following:
 
Most of the remaining occurrences are related to one of the following:
 +
*aircraft-aircraft collisions or near collisions - collisions can result from:
 +
**failure to follow taxiway centreline guidance
 +
**failure to stop prior to a [[Stopbars (SKYclip)|stopbar]]
 +
**taxiing at speeds unsuited to the conditions or level of congestion
 +
**taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
 +
**taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
 
*reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
 
*reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
 
**inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
 
**inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
**manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate). If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
+
**failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
*aircraft-aircraft collisions or near collisions - collisions can result from:
+
*jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to [[Jet Efflux Hazard|jet blast]]. Jet blast can also cause unsecured equipment such as [[Unit Load Devices]] to move and strike other aircraft, equipment or personnel
**failure to follow taxiway centreline guidance
+
 
**failure to stop prior to a stop bar
+
==Prevention==
**taxiing at speeds unsuited to the conditions or congestion
+
Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:
**taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft
+
*Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
*jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as ULDs to move and strike other aircraft, equipment or personnel
+
**ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
 +
**maintain situational awareness
 +
**operate their vehicle safely and in accordance with all company and airport rules
 +
**obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
 +
**yield to aircraft at all times
 +
**obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
 +
*Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
 +
**know the size of the aircraft in tow inclusive of the wingspan
 +
**be conversant with the normal taxi routes from one airfield location to another
 +
**understand the stopping distances required for a tug with an aircraft in tow
 +
**comply with all clearances, especially runway crossing clearances
 +
**use wing and tail walkers when manoeuvring in congested areas
 +
*Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
 +
**provide the appropriate clearance for the requested action
 +
**ensure that the clearance readback is accurate
 +
**to the extent possible, monitor the movement visually, via transponder or by use of [[Multilateration|multilateration equipment]] to ensure clearance compliance
 +
*Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
 +
**request, readback and comply with an appropriate clearance
 +
**maintain situational awareness
 +
**taxi at a speed appropriate to the conditions and traffic situation
 +
**maintain the centre of the taxi lane
 +
**be vigilant for taxi lane compromise by another aircraft, vehicle or object
 +
**not assume that vehicles will yield right-of-way
 +
 
 
==Accidents and Incidents==
 
==Accidents and Incidents==
The following accidents and incidents describe collision or near collision between two aircraft, an aircraft and a vehicle or an aircraft and a stationary object.
+
The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.
 
===Aircraft/Aircraft Conflict===
 
===Aircraft/Aircraft Conflict===
 
{{#ask: [[GND::Aircraft / Aircraft conflict]]
 
{{#ask: [[GND::Aircraft / Aircraft conflict]]
Line 75: Line 103:
 
*[http://www.skybrary.aero/bookshelf/books/3524.pdf ACRP Report 148: LED Airfield Lighting System Operation and Maintenance], J. Burns et al., Transportation Research Board (U.S.), 2015
 
*[http://www.skybrary.aero/bookshelf/books/3524.pdf ACRP Report 148: LED Airfield Lighting System Operation and Maintenance], J. Burns et al., Transportation Research Board (U.S.), 2015
  
[[Category:Ground Operations   [[Category:Operational Issues
+
[[Category:Ground Operations]]

Latest revision as of 10:02, 28 June 2018

Article Information
Category: Ground Operations Ground Operations
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

An airport is a complex interface between the air and the ground environments, where access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.

This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article On-Gate Collisions provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.

Occurrences

As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:

  • using an incorrect taxiway
  • failing to stop at a taxiway holding point
  • failing to stay on the surface movement control radio frequency or ground frequency as appropriate
  • failing to obtain a clearance before entering an area subject to control.

In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:

  • lead to collision
  • require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties


Most of the remaining occurrences are related to one of the following:

  • aircraft-aircraft collisions or near collisions - collisions can result from:
    • failure to follow taxiway centreline guidance
    • failure to stop prior to a stopbar
    • taxiing at speeds unsuited to the conditions or level of congestion
    • taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
    • taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
  • reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
    • inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
    • failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
  • jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as Unit Load Devices (ULD) to move and strike other aircraft, equipment or personnel

Prevention

Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:

  • Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
    • ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
    • maintain situational awareness
    • operate their vehicle safely and in accordance with all company and airport rules
    • obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
    • yield to aircraft at all times
    • obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
  • Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
    • know the size of the aircraft in tow inclusive of the wingspan
    • be conversant with the normal taxi routes from one airfield location to another
    • understand the stopping distances required for a tug with an aircraft in tow
    • comply with all clearances, especially runway crossing clearances
    • use wing and tail walkers when manoeuvring in congested areas
  • Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
    • provide the appropriate clearance for the requested action
    • ensure that the clearance readback is accurate
    • to the extent possible, monitor the movement visually, via transponder or by use of multilateration equipment to ensure clearance compliance
  • Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
    • request, readback and comply with an appropriate clearance
    • maintain situational awareness
    • taxi at a speed appropriate to the conditions and traffic situation
    • maintain the centre of the taxi lane
    • be vigilant for taxi lane compromise by another aircraft, vehicle or object
    • not assume that vehicles will yield right-of-way

Accidents and Incidents

The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.

Aircraft/Aircraft Conflict

  • B738/B763, Barcelona Spain, 2011 (On 14 April 2011, a Ryanair Boeing 737-800 failed to leave sufficient clearance when taxiing behind a stationary Boeing 767-300 at Barcelona and the 737 wingtip was in collision with the horizontal stabiliser of the 767, damaging both. The 767 crew were completely unaware of any impact but the 737 crew realised the ‘close proximity’ but dismissed a cabin crew report that a passenger had observed a collision. Both aircraft completed their intended flights without incident after which the damage was discovered, that to the 767 requiring that the aircraft be repaired before further flight.)
  • DH8C / P180, Ottawa ON Canada, 2013 (On 1 December 2013, a small aircraft taxing for departure at night was cleared to cross an active runway and did so as a DHC8 was taking off from the same runway. Separation was significant and there was no actual risk of collision. The Investigation found that the GND controller had issued clearance to the taxiing aircraft when he had responsibility for its whole taxi route but had neither updated the aircraft status system nor directly advised of the taxiing aircraft when passing responsibility for part of its cleared route to the TWR controller who therefore remained unaware of it.)
  • B763 / A320, Delhi India, 2017 (On 8 August 2017, a Boeing 767-300 departing Delhi was pushed back into a stationary and out of service Airbus A320 on the adjacent gate rendering both aircraft unfit for flight. The Investigation found that the A320 had been instructed to park on a stand that was supposed to be blocked, a procedural requirement if the adjacent stand is to be used by a wide body aircraft and although this error had been detected by the stand allocation system, the alert was not noticed, in part due to inappropriate configuration. It was also found that the pushback was commenced without wing walkers.)
  • MD82 / C441, Lambert-St Louis MI USA, 1994 (On 22 November 1994 a McDonnell Douglas MD 82 flight crew taking off from Lambert- St. Louis at night in excellent visibility suddenly became aware of a stationary Cessna 441 on the runway ahead and was unable to avoid a high speed collision. The collision destroyed the Cessna but allowed the MD82 to be brought to a controlled stop without occupant injury. The Investigation found that the Cessna 441 pilot had mistakenly believed his departure would be from the runway he had recently landed on and had entered that runway without clearance whilst still on GND frequency.)
  • B738/B738, Girona Spain, 2010 (On 14 January 2010, two Ryanair Boeing 737-800 aircraft were operating scheduled passenger flights from Girona to Las Palmas and Turin respectively and had taxied from adjacent gates at Girona in normal day visibility in quick succession. The Turin-bound aircraft taxied first but because it was early at the holding point for its CTOT, the other aircraft was designated first for take off and during the overtaking manoeuvre in the holding area, the wing tip of the moving Las Palmas aircraft hit the horizontal stabiliser of the Turin bound aircraft causing minor and substantial damage to the respective aircraft. None of the respective 81 and 77 occupants were injured and both aircraft taxied back to their gates.)
  • B744 / B763, Melbourne Australia, 2006 (On 2 February 2006, a Boeing 747-400 was taxiing for a departure at Melbourne Airport. At the same time, a Boeing 767-300 was stationary on taxiway Echo and waiting in line to depart from runway 16. The left wing tip of the Boeing 747 collided with the right horizontal stabiliser of the Boeing 767 as the first aircraft passed behind. Both aircraft were on scheduled passenger services from Melbourne to Sydney. No one was injured during the incident.)
  • B732, vicinity Washington National DC USA, 1982 (On 13 January 1982, an Air Florida Boeing 737-200 took off in daylight from runway 36 at Washington National in moderate snow but then stalled before hitting a bridge and vehicles and continuing into the river below after just one minute of flight killing most of the occupants and some people on the ground. The accident was attributed entirely to a combination of the actions and inactions of the crew in relation to the prevailing adverse weather conditions and, crucially, to the failure to select engine anti ice on which led to over reading of actual engine thrust.)
  • MD82 / MD11, Anchorage AK USA, 2002 (On 17 March 2002, at Ted Stevens Anchorage Airport, a McDonnell Douglas MD82 operated by Alaska Airlines, on a night pushback in snow conditions collided with an inbound taxiing McDonnell Douglas MD-11. The MD82 suffered substantial rudder damage although the impacting MD11 winglet was undamaged.)

Aircraft/Vehicle Conflict

  • Vehicle / PA31, Mackay SE Australia, 2008 (On 29 June 2012, a Piper PA31 taking off from runway 05 on a passenger charter flight just missed hitting an inspection vehicle which had entered the take off runway from an intersecting one contrary to ATC clearance. The overflying aircraft was estimated to have cleared the vehicle by approximately 20 feet and the pilot was unaware it had entered the active runway. The driver had been taking a mobile telephone call at the time and attributed the incursion to distraction. The breached clearance had been given and correctly read back approximately two minutes prior to the conflict occurring.)
  • B763, Luton UK, 2005 (On 16 February 2005, at Luton Airport, a Boeing B767-300 collided with the tug pulling it forward when the shear pin of the unserviceable tow bar being used to pull the aircraft broke. The aircraft ran onto the tug when the ground crew stopped the tug suddenly. As result of the collision with the tug the aircraft fuselage and landing gear was damaged.)
  • A343, Frankfurt Germany, 2008 (On 21 August 2008, an Airbus A340-300 being operated by an undisclosed operator by a German-licensed flight crew on a scheduled passenger flight from Teheran to Frankfurt collided with a stationary bus with only the driver on board whilst approaching the allocated parking gate in normal daylight visibility. The No 4 engine impacted the bus roof as shown in the photograph below reproduced from the official report. None of the occupants of either the aircraft or the bus were injured.)
  • FA50 / Vehicle, Moscow Vnukovo Russia, 2014 (On 20 October 2014 a Dassault Falcon 50 taking off at night from Moscow Vnukovo collided with a snow plough which had entered the same runway without clearance shortly after rotation. Control was lost and all occupants died when it was destroyed by impact forces and post crash fire. The uninjured snow plough driver was subsequently discovered to be under the influence of alcohol. The Investigation found that the A-SMGCS effective for over a year prior to the collision had not been properly configured nor had controllers been adequately trained on its use, especially its conflict alerting functions.)
  • B737, Gran Canaria Spain, 2016 (On 7 January 2016, a Boeing 737-700 was inadvertently cleared by ATC to take off on a closed runway. The take-off was commenced with a vehicle visible ahead at the runway edge. When ATC realised the situation, a 'stop' instruction was issued and the aircraft did so after travelling approximately 740 metres. Investigation attributed the controller error to "lost situational awareness". It also noted prior pilot and controller awareness that the runway used was closed and that the pilots had, on the basis of the take-off clearance crossed a lit red stop bar to enter the runway without explicit permission.)
  • A320, London Heathrow UK, 2006 (On 26 June 2006, after an uneventful pre-flight pushback of a British Airways Airbus A320-200 at London Heathrow Airport, the aircraft started moving under its own power and, shortly afterwards, collided with the tractor that had just performed the pushback, damaging both the right engine and the tractor.)
  • E190 / Vehicle, Paris CDG France, 2014 (On 19 April 2014, an Embraer 190 collided with the tug which was attempting to begin a pull forward after departure pushback which, exceptionally for the terminal concerned, was prohibited for the gate involved. As a result, severe damage was caused to the lower fuselage. The Investigation found that the relevant instructions were properly documented but ignored when apron services requested a 'push-pull' to minimise departure delay for an adjacent aircraft. Previous similar events had occurred on the same gate and it was suspected that a lack of appreciation of the reasons why the manoeuvre used was prohibited may have been relevant.)
  • B744, Paris CDG France, 2003 (On 18 January 2003, a Boeing 747-400F being operated by Singapore Airlines Cargo on a scheduled cargo flight from Paris CDG to Dubai taxied for departure in darkness and fog with visibility less than 100 metres in places and the right wing was in collision with a stationary and unoccupied ground de/anti icing vehicle without the awareness of either the flight crew or anybody else at the time. Significant damage occurred to the de icing vehicle and the aircraft was slightly damaged. The vehicle damage was not discovered until almost two hours later and the aircraft involved was not identified until it arrived in Dubai where the damage was observed and the authorities at Paris CDG advised.)

Aircraft/Object Conflict

  • AT72, Shannon Ireland, 2014 (On 26 February 2014, an ATR 72-202 which had been substituted for the ATR42 which usually operated a series of night cargo flights was being marshalled out of its parking position with a new flight crew on board when the left wing was in collision with the structure of an adjacent hangar. The Investigation found that the aircraft type had not been changed on the applicable flight plan and ATC were consequently unaware that the aircraft had previously been parked in a position only approved for the use by the usual smaller aircraft type.)
  • B773, Lisbon Portugal, 2016 (On 13 January 2016 ice was found on the upper and lower wing surfaces of a Boeing 777-300ER about to depart in the late morning from Lisbon in CAVOK conditions and 10°C. As Lisbon had no de-ice facilities, it was towed to a location where the sun would melt the ice more quickly but during poorly-planned manoeuvring, one of the wingtips was damaged by contact with an obstruction. The Investigation attributed the ice which led to the problematic re-positioning to the operator’s policy of tankering most of the return fuel on the overnight inbound flight where it had become cold-soaked.)
  • A319, London Heathrow UK, 2007 (On 12 February 2007, an Airbus A319-100 being operated by British Airways on a scheduled passenger flight into London Heathrow made unintended contact in normal daylight visibility with the stationary airbridge at the arrival gate. This followed an emergency stop made after seeing hand signals from ground staff whilst following SEGS indications which appeared to suggest that there was a further 5 metres to run to the correct parking position. There was no damage to the aircraft, only minimal damage to the airbridge and there were no injuries to the aircraft occupants or any other person)
  • B744, Johannesburg South Africa, 2013 (On 22 December 2013, a Boeing 747-400 taxiing for departure at Johannesburg at night with an augmented crew failed to follow its correctly-acknowledged taxi clearance and one wing hit a building resulting in substantial damage to both aircraft and building and a significant fuel leak. The aircraft occupants were all uninjured but four people in the building sustained minor injuries. The accident was attributed to crew error both in respect of an inadequate briefing and failure to monitor aircraft position using available charts and visual reference. Some minor contributory factors relating to the provision of airport lighting and signage were noted.)
  • B722, Cotonou Benin, 2003 (On 25 December 2003, a Boeing 727-200 being operated by UTA (Guinea) on a scheduled passenger flight from Cotonou to Beirut with a planned stopover at Kufra, Libya, failed to get properly airborne in day VMC from the 2400 metre departure runway and hit a small building 2.45 metres high situated on the extended centreline 118 metres beyond the end of the runway. The right main landing gear broke off and ripped off a part of the trailing edge flaps on the right wing. The airplane then banked slightly to the right and crashed onto the beach where it broke into several pieces and ended up in the sea where the depth of water varied between three and ten metres. Of the estimated 163 occupants, 141 were killed and the remainder seriously injured.)
  • B734, Aberdeen UK, 2005 (Significant damage was caused to the tailplane and elevator of a Boeing 737-400 after the pavement beneath them broke up when take off thrust was applied for a standing start from the full length of the runway at Aberdeen. Although in this case neither outcome applied, the Investigation noted that control difficulties consequent upon such damage could lead to an overrun following a high speed rejected takeoff or to compromised flight path control airborne. Safety Recommendations on appropriate regulatory guidance for marking and construction of blast pads and on aircraft performance, rolling take offs and lead-on line marking were made.)
  • RJ85, Helsinki Finland 2010 (On 12 June 2010, a requested 22R runway inspection at Helsinki in normal daylight visibility carried out after a severe engine failure during the take off roll had led an Avro RJ85 being operated by Finnish Airline Blue1 on a scheduled passenger flight to Copenhagen to reject that take off at high speed. This inspection had not detected significant debris deposited on the runway during the sudden and severe engine failure. Two passenger aircraft, one being operated by Finnair to Dubrovnik, Croatia and the other being operated by Swedish airline TUIfly Nordic to Rhodes, Greece then departed the same runway before a re-inspection disclosed the debris and it was removed. Neither of the aircraft which used the runway prior to debris removal were subsequently found to have suffered any damage but both were advised of the situation en route.)
  • A319, Ibiza Spain, 2016 (On 19 June 2016, an Airbus A320 failed to follow the clearly-specified and ground-marked self-positioning exit from a regularly used gate at Ibiza and its right wing tip collided with the airbridge, damaging both it and the aircraft. The Investigation found that the crew had attempted the necessary left turn using the Operator’s ‘One Engine Taxi Departure’ procedure using the left engine but then failed to follow the marked taxi guideline by a significant margin. It was noted that there had been no other such difficulties with the same departure in the previous four years it had been in use.)

Related Articles

Further Reading