If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Difference between revisions of "Taxiway Collisions"

From SKYbrary Wiki

m (Occurrences)
 
(34 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
|control_caption  = About SKYbrary
 
|control_caption  = About SKYbrary
 
}}
 
}}
{{Under construction}}
+
 
 
==Description==
 
==Description==
 
An airport is a complex interface between the air and the ground environments, where  access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.
 
An airport is a complex interface between the air and the ground environments, where  access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.
Line 13: Line 13:
 
This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article [[On-Gate Collisions]] provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.
 
This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article [[On-Gate Collisions]] provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.
 
==Occurrences==
 
==Occurrences==
Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:
+
As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:
 
*using an incorrect taxiway
 
*using an incorrect taxiway
 
*failing to stop at a taxiway holding point
 
*failing to stop at a taxiway holding point
Line 22: Line 22:
 
*lead to collision
 
*lead to collision
 
*require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties
 
*require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties
 +
 +
 
Most of the remaining occurrences are related to one of the following:
 
Most of the remaining occurrences are related to one of the following:
 +
*aircraft-aircraft collisions or near collisions - collisions can result from:
 +
**failure to follow taxiway centreline guidance
 +
**failure to stop prior to a [[Stopbars (SKYclip)|stopbar]]
 +
**taxiing at speeds unsuited to the conditions or level of congestion
 +
**taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
 +
**taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
 
*reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
 
*reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
 
**inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
 
**inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
**manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate). If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
+
**failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
*aircraft-aircraft collisions or near collisions - collisions can result from:
+
*jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to [[Jet Efflux Hazard|jet blast]]. Jet blast can also cause unsecured equipment such as [[Unit Load Devices]] to move and strike other aircraft, equipment or personnel
**failure to follow taxiway centreline guidance
+
 
**failure to stop prior to a stop bar
+
==Prevention==
**taxiing at speeds unsuited to the conditions or congestion
+
Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:
**taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft
+
*Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
*jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as ULDs to move and strike other aircraft, equipment or personnel
+
**ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
 +
**maintain situational awareness
 +
**operate their vehicle safely and in accordance with all company and airport rules
 +
**obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
 +
**yield to aircraft at all times
 +
**obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
 +
*Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
 +
**know the size of the aircraft in tow inclusive of the wingspan
 +
**be conversant with the normal taxi routes from one airfield location to another
 +
**understand the stopping distances required for a tug with an aircraft in tow
 +
**comply with all clearances, especially runway crossing clearances
 +
**use wing and tail walkers when manoeuvring in congested areas
 +
*Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
 +
**provide the appropriate clearance for the requested action
 +
**ensure that the clearance readback is accurate
 +
**to the extent possible, monitor the movement visually, via transponder or by use of [[Multilateration|multilateration equipment]] to ensure clearance compliance
 +
*Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
 +
**request, readback and comply with an appropriate clearance
 +
**maintain situational awareness
 +
**taxi at a speed appropriate to the conditions and traffic situation
 +
**maintain the centre of the taxi lane
 +
**be vigilant for taxi lane compromise by another aircraft, vehicle or object
 +
**not assume that vehicles will yield right-of-way
 +
 
 +
==Accidents and Incidents==
 +
The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.
 +
===Aircraft/Aircraft Conflict===
 +
{{#ask: [[GND::Aircraft / Aircraft conflict]]
 +
|?Synopsis=
 +
|format=ul
 +
|order=random
 +
|limit=8
 +
|searchlabel=
 +
}}
 +
===Aircraft/Vehicle Conflict===
 +
{{#ask: [[GND::Aircraft / Vehicle conflict]]
 +
|?Synopsis=
 +
|format=ul
 +
|order=random
 +
|limit=8
 +
|searchlabel=
 +
}}
 +
===Aircraft/Object Conflict===
 +
{{#ask: [[GND::Aircraft / Object or Structure conflict]]
 +
|?Synopsis=
 +
|format=ul
 +
|order=random
 +
|limit=8
 +
|searchlabel=
 +
}}
  
 
==Related Articles==
 
==Related Articles==
Line 46: Line 103:
 
*[http://www.skybrary.aero/bookshelf/books/3524.pdf ACRP Report 148: LED Airfield Lighting System Operation and Maintenance], J. Burns et al., Transportation Research Board (U.S.), 2015
 
*[http://www.skybrary.aero/bookshelf/books/3524.pdf ACRP Report 148: LED Airfield Lighting System Operation and Maintenance], J. Burns et al., Transportation Research Board (U.S.), 2015
  
[[Category:Ground Operations   [[Category:Operational Issues
+
[[Category:Ground Operations]]

Latest revision as of 10:02, 28 June 2018

Article Information
Category: Ground Operations Ground Operations
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

An airport is a complex interface between the air and the ground environments, where access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.

This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article On-Gate Collisions provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.

Occurrences

As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:

  • using an incorrect taxiway
  • failing to stop at a taxiway holding point
  • failing to stay on the surface movement control radio frequency or ground frequency as appropriate
  • failing to obtain a clearance before entering an area subject to control.

In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:

  • lead to collision
  • require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties


Most of the remaining occurrences are related to one of the following:

  • aircraft-aircraft collisions or near collisions - collisions can result from:
    • failure to follow taxiway centreline guidance
    • failure to stop prior to a stopbar
    • taxiing at speeds unsuited to the conditions or level of congestion
    • taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
    • taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
  • reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
    • inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
    • failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
  • jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as Unit Load Devices (ULD) to move and strike other aircraft, equipment or personnel

Prevention

Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:

  • Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
    • ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
    • maintain situational awareness
    • operate their vehicle safely and in accordance with all company and airport rules
    • obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
    • yield to aircraft at all times
    • obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
  • Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
    • know the size of the aircraft in tow inclusive of the wingspan
    • be conversant with the normal taxi routes from one airfield location to another
    • understand the stopping distances required for a tug with an aircraft in tow
    • comply with all clearances, especially runway crossing clearances
    • use wing and tail walkers when manoeuvring in congested areas
  • Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
    • provide the appropriate clearance for the requested action
    • ensure that the clearance readback is accurate
    • to the extent possible, monitor the movement visually, via transponder or by use of multilateration equipment to ensure clearance compliance
  • Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
    • request, readback and comply with an appropriate clearance
    • maintain situational awareness
    • taxi at a speed appropriate to the conditions and traffic situation
    • maintain the centre of the taxi lane
    • be vigilant for taxi lane compromise by another aircraft, vehicle or object
    • not assume that vehicles will yield right-of-way

Accidents and Incidents

The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.

Aircraft/Aircraft Conflict

  • A343 / B752, London Heathrow UK, 1995 (On 23 November 1995, in normal daylight visibility, an Airbus A340-300 being operated by Gulf Air on a scheduled international passenger flight from London Heathrow taxied past a Boeing 757-200 being operated by British Airways on a scheduled domestic passenger flight and also departing from London Heathrow which had stopped on a diverging taxiway within the departure holding area for Runway 27R such that the wing tip of the Airbus impacted the tail fin of other aircraft. Two of the 378 occupants of the two aircraft suffered minor injuries and both aircraft were damaged. Passengers were deplaned uneventfully from both aircraft.)
  • MD82 / MD11, Anchorage AK USA, 2002 (On 17 March 2002, at Ted Stevens Anchorage Airport, a McDonnell Douglas MD82 operated by Alaska Airlines, on a night pushback in snow conditions collided with an inbound taxiing McDonnell Douglas MD-11. The MD82 suffered substantial rudder damage although the impacting MD11 winglet was undamaged.)
  • B763 / A320, Delhi India, 2017 (On 8 August 2017, a Boeing 767-300 departing Delhi was pushed back into a stationary and out of service Airbus A320 on the adjacent gate rendering both aircraft unfit for flight. The Investigation found that the A320 had been instructed to park on a stand that was supposed to be blocked, a procedural requirement if the adjacent stand is to be used by a wide body aircraft and although this error had been detected by the stand allocation system, the alert was not noticed, in part due to inappropriate configuration. It was also found that the pushback was commenced without wing walkers.)
  • A343 / B763, Barcelona Spain, 2014 (On 5 July 2014, an Airbus A340-300 taxiing for departure at Barcelona was cleared across an active runway in front of an approaching Boeing 767 with landing clearance on the same runway by a Ground Controller unaware that the runway was active. Sighting by both aircraft resulted in an accelerated crossing and a very low go around. The Investigation noted the twice-daily runway configuration change made due to noise abatement reasons was imminent. It was also noted that airport procedure involved use of stop bars even on inactive runways and that their operation was then the responsibility of ground controllers.)
  • MD82 / C441, Lambert-St Louis MI USA, 1994 (On 22 November 1994 a McDonnell Douglas MD 82 flight crew taking off from Lambert- St. Louis at night in excellent visibility suddenly became aware of a stationary Cessna 441 on the runway ahead and was unable to avoid a high speed collision. The collision destroyed the Cessna but allowed the MD82 to be brought to a controlled stop without occupant injury. The Investigation found that the Cessna 441 pilot had mistakenly believed his departure would be from the runway he had recently landed on and had entered that runway without clearance whilst still on GND frequency.)
  • B772 / A321, London Heathrow UK, 2007 (On 27 July 2007, a British Airways Boeing 777-200ER collided, during pushback, with a stationary Airbus A321-200. The A321 was awaiting activation of the electronic Stand Entry Guidance (SEG) and expecting entry to its designated gate.)
  • FA7X, London City UK, 2016 (On 24 November 2016, a Dassault Falcon 7X being marshalled into an unmarked parking position after arriving at London City Airport was inadvertently directed into a collision with another crewed but stationary aircraft which sustained significant damage. The Investigation found that the apron involved had been congested and that the aircraft was being marshalled in accordance with airport procedures with wing walker assistance but a sharp corrective turn which created a 'wing growth' effect created a collision risk that was signalled at the last minute and incorrectly so by the wing walker involved and was also not seen by the marshaller.)
  • DH8C / P180, Ottawa ON Canada, 2013 (On 1 December 2013, a small aircraft taxing for departure at night was cleared to cross an active runway and did so as a DHC8 was taking off from the same runway. Separation was significant and there was no actual risk of collision. The Investigation found that the GND controller had issued clearance to the taxiing aircraft when he had responsibility for its whole taxi route but had neither updated the aircraft status system nor directly advised of the taxiing aircraft when passing responsibility for part of its cleared route to the TWR controller who therefore remained unaware of it.)

Aircraft/Vehicle Conflict

  • B737, Gran Canaria Spain, 2016 (On 7 January 2016, a Boeing 737-700 was inadvertently cleared by ATC to take off on a closed runway. The take-off was commenced with a vehicle visible ahead at the runway edge. When ATC realised the situation, a 'stop' instruction was issued and the aircraft did so after travelling approximately 740 metres. Investigation attributed the controller error to "lost situational awareness". It also noted prior pilot and controller awareness that the runway used was closed and that the pilots had, on the basis of the take-off clearance crossed a lit red stop bar to enter the runway without explicit permission.)
  • A320, Dublin Ireland, 2017 (On 27 September 2017, an Airbus A320 being manoeuvred off the departure gate at Dublin by tug was being pulled forward when the tow bar shear pin broke and the tug driver lost control. The tug then collided with the right engine causing significant damage. The tug driver and assisting ground crew were not injured. The Investigation concluded that although the shear pin failure was not attributable to any particular cause, the relative severity of the outcome was probably increased by the wet surface, a forward slope on the ramp and fact that an engine start was in progress.)
  • FA50 / Vehicle, Moscow Vnukovo Russia, 2014 (On 20 October 2014 a Dassault Falcon 50 taking off at night from Moscow Vnukovo collided with a snow plough which had entered the same runway without clearance shortly after rotation. Control was lost and all occupants died when it was destroyed by impact forces and post crash fire. The uninjured snow plough driver was subsequently discovered to be under the influence of alcohol. The Investigation found that the A-SMGCS effective for over a year prior to the collision had not been properly configured nor had controllers been adequately trained on its use, especially its conflict alerting functions.)
  • B763, Luton UK, 2005 (On 16 February 2005, at Luton Airport, a Boeing B767-300 collided with the tug pulling it forward when the shear pin of the unserviceable tow bar being used to pull the aircraft broke. The aircraft ran onto the tug when the ground crew stopped the tug suddenly. As result of the collision with the tug the aircraft fuselage and landing gear was damaged.)
  • Vehicle / PA31, Mackay SE Australia, 2008 (On 29 June 2012, a Piper PA31 taking off from runway 05 on a passenger charter flight just missed hitting an inspection vehicle which had entered the take off runway from an intersecting one contrary to ATC clearance. The overflying aircraft was estimated to have cleared the vehicle by approximately 20 feet and the pilot was unaware it had entered the active runway. The driver had been taking a mobile telephone call at the time and attributed the incursion to distraction. The breached clearance had been given and correctly read back approximately two minutes prior to the conflict occurring.)
  • B738, London Stansted UK, 2008 (On 13 November 2008, a Boeing 737-800 with an unserviceable APU was being operated by Ryanair on a passenger flight at night was in collision with a tug after a cross-bleed engine start procedure was initiated prior to the completion of a complex aircraft pushback in rain. As the power was increased on the No 1 engine in preparation for the No 2 engine start, the resulting increase in thrust was greater than the counter-force provided by the tug and the aircraft started to move forwards. The towbar attachment failed and subsequently the aircraft’s No 1 engine impacted the side of the tug, prior to the aircraft brakes being applied.)
  • SB20, Stockholm Arlanda, 2001 (On 18 December 2001, a Saab 2000 being operated by Air Botnia on scheduled passenger flight from Stockholm to Oulu was taxiing out at night in normal visibility in accordance with its ATC clearance when a car appeared from the left on a roadway and drove at speed on a collision course with the aircraft. In order to avoid a collision, the aircraft had to brake sharply and the aircraft commander saw the car pass under the nose of the aircraft and judged the vehicle’s closest distance to the aircraft to be four to five metres. The car did not stop, could not subsequently be identified and no report was made by the driver or other witnesses. The diagram below taken from the official report shows the site of the conflict - the aircraft was emerging from Ramp ‘G’ to turn left on taxiway ‘Z’ and the broken line shows the roadway which is crossed just before the left turn is commenced.)
  • B742, Stockholm Arlanda Sweden, 2007 (On 25 June 2007, a Boeing 747-200F being operated by Cathay Pacific on a scheduled cargo flight from Stockholm to Dubai had completed push back for departure in normal daylight visibility and the parking brakes had been set. The tow vehicle crew had disconnected the tow bar but before they and their vehicle had cleared the vicinity of the aircraft, it began to taxi and collided with the vehicle. The flight crew were unaware of this and continued taxiing for about 150 metres until the flight engineer noticed that the indications from one if the engines were abnormal and the aircraft was taxied back to the gate. The tow vehicle crew and the dispatcher had been able to run clear and were not injured physically injured although all three were identified as suffering minor injury (shock). The aircraft was “substantially damaged” and the tow vehicle was “damaged”.)

Aircraft/Object Conflict

  • A320, Lisbon Portugal, 2015 (On 19 May 2015, an Airbus A319 crew attempted to taxi into a nose-in parking position at Lisbon despite the fact that the APIS, although switched on, was clearly malfunctioning whilst not displaying an unequivocal ‘STOP’. The aircraft continued 6 metres past the applicable apron ground marking by which time it had hit the airbridge. The marshaller in attendance to oversee the arrival did not signal the aircraft or manually select the APIS ‘STOP’ instruction. The APIS had failed to detect the dark-liveried aircraft and the non-display of a steady ‘STOP’ indication was independently attributed to a pre-existing system fault.)
  • B738, Surat India, 2014 (On 6 November 2014, a Boeing 737-800 taking off at night from Surat hit an object as it was approaching 80 knots and the take-off was immediately rejected. On return to the gate substantial damage was found to the left engine and a runway inspection found one dead buffalo and another live one. The runway was reopened after removal of the carcass but the live buffalo was not removed and was seen again by the runway the following day. The Investigation found a history of inadequate perimeter fencing and inadequate runway inspection practices at the airport.)
  • B74S, Stockholm Arlanda Sweden, 2006 (On 11 December 2006, a Boeing 747SP being operated by Syrian Air on a scheduled passenger flight from Damascus to Stockholm was arriving on the designated parking gate at destination in normal visibility at night when it collided with the airbridge. None of the 116 occupants of the aircraft suffered any injury but the aircraft was “substantially damaged” and the airbridge was “damaged”.)
  • DH8D, Hubli India, 2015 (On 8 March 2015, directional control of a Bombardier DHC 8-400 which had just completed a normal approach and landing was lost and the aircraft departed the side of the runway following the collapse of both the left main and nose landing gear assemblies. The Investigation found that after being allowed to drift to the side of the runway without corrective action, the previously airworthy aircraft had hit a non-frangible edge light and the left main gear and then the nose landing gear had collapsed with a complete loss of directional control. The aircraft had then exited the side of the runway sustaining further damage.)
  • B738, Djalaluddin Indonesia, 2013 (On 6 August 2013, a Boeing 737-800 encountered cows ahead on the runway after landing normally in daylight following an uneventful approach and was unable to avoid colliding with them at high speed and as a result departed the runway to the left. Parts of the airport perimeter fencing were found to have been either missing or inadequately maintained for a significant period prior to the accident despite the existence of an airport bird and animal hazard management plan. Corrective action was taken following the accident.)
  • B773, Lisbon Portugal, 2016 (On 13 January 2016 ice was found on the upper and lower wing surfaces of a Boeing 777-300ER about to depart in the late morning from Lisbon in CAVOK conditions and 10°C. As Lisbon had no de-ice facilities, it was towed to a location where the sun would melt the ice more quickly but during poorly-planned manoeuvring, one of the wingtips was damaged by contact with an obstruction. The Investigation attributed the ice which led to the problematic re-positioning to the operator’s policy of tankering most of the return fuel on the overnight inbound flight where it had become cold-soaked.)
  • A319, Ibiza Spain, 2016 (On 19 June 2016, an Airbus A320 failed to follow the clearly-specified and ground-marked self-positioning exit from a regularly used gate at Ibiza and its right wing tip collided with the airbridge, damaging both it and the aircraft. The Investigation found that the crew had attempted the necessary left turn using the Operator’s ‘One Engine Taxi Departure’ procedure using the left engine but then failed to follow the marked taxi guideline by a significant margin. It was noted that there had been no other such difficulties with the same departure in the previous four years it had been in use.)
  • A319, London Heathrow UK, 2007 (On 12 February 2007, an Airbus A319-100 being operated by British Airways on a scheduled passenger flight into London Heathrow made unintended contact in normal daylight visibility with the stationary airbridge at the arrival gate. This followed an emergency stop made after seeing hand signals from ground staff whilst following SEGS indications which appeared to suggest that there was a further 5 metres to run to the correct parking position. There was no damage to the aircraft, only minimal damage to the airbridge and there were no injuries to the aircraft occupants or any other person)

Related Articles

Further Reading