If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Difference between revisions of "Taxiway Collisions"

From SKYbrary Wiki

m
(Further Reading)
Line 102: Line 102:
 
*[http://www.skybrary.aero/bookshelf/books/3524.pdf ACRP Report 148: LED Airfield Lighting System Operation and Maintenance], J. Burns et al., Transportation Research Board (U.S.), 2015
 
*[http://www.skybrary.aero/bookshelf/books/3524.pdf ACRP Report 148: LED Airfield Lighting System Operation and Maintenance], J. Burns et al., Transportation Research Board (U.S.), 2015
  
[[Category:Ground Operations   [[Category:Operational Issues
+
[[Category:Ground Operations]]

Revision as of 09:59, 28 June 2018

Article Information
Category: Ground Operations Ground Operations
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

An airport is a complex interface between the air and the ground environments, where access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.

This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article On-Gate Collisions provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.

Occurrences

As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:

  • using an incorrect taxiway
  • failing to stop at a taxiway holding point
  • failing to stay on the surface movement control radio frequency or ground frequency as appropriate
  • failing to obtain a clearance before entering an area subject to control.

In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:

  • lead to collision
  • require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties


Most of the remaining occurrences are related to one of the following:

  • aircraft-aircraft collisions or near collisions - collisions can result from:
    • failure to follow taxiway centreline guidance
    • failure to stop prior to a stopbar
    • taxiing at speeds unsuited to the conditions or level of congestion
    • taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
    • taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
  • reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
    • inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
    • failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
  • jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as Unit Load Devices (ULD) to move and strike other aircraft, equipment or personnel

Prevention

Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:

  • Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
    • ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
    • maintain situational awareness
    • operate their vehicle safely and in accordance with all company and airport rules
    • obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
    • yield to aircraft at all times
    • obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
  • Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
    • know the size of the aircraft in tow inclusive of the wingspan
    • be conversant with the normal taxi routes from one airfield location to another
    • understand the stopping distances required for a tug with an aircraft in tow
    • comply with all clearances, especially runway crossing clearances
    • use wing and tail walkers when manoeuvring in congested areas
  • Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
    • provide the appropriate clearance for the requested action
    • ensure that the clearance readback is accurate
    • to the extent possible, monitor the movement visually, via transponder or by use of multilateration equipment to ensure clearance compliance
  • Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
    • request, readback and comply with an appropriate clearance
    • maintain situational awareness
    • taxi at a speed appropriate to the conditions and traffic situation
    • maintain the centre of the taxi lane
    • be vigilant for taxi lane compromise by another aircraft, vehicle or object
    • not assume that vehicles will yield right-of-way

Accidents and Incidents

The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.

Aircraft/Aircraft Conflict

  • B190 / B737, Calgary Canada, 2014 (On 29 March 2014, a Beech 1900D being taxied by maintenance personnel at Calgary entered the active runway without clearance in good visibility at night as a Boeing 737-700 was taking off. The 737 passed safely overhead. The Investigation found that the taxiing aircraft had taken a route completely contrary to the accepted clearance and that the engineer on control of the aircraft had not received any relevant training. Although the airport had ASDE in operation, a transponder code was not issued to the taxiing aircraft as required and stop bar crossing detection was not enabled at the time.)
  • MD82 / MD11, Anchorage AK USA, 2002 (On 17 March 2002, at Ted Stevens Anchorage Airport, a McDonnell Douglas MD82 operated by Alaska Airlines, on a night pushback in snow conditions collided with an inbound taxiing McDonnell Douglas MD-11. The MD82 suffered substantial rudder damage although the impacting MD11 winglet was undamaged.)
  • A343 / B752, London Heathrow UK, 1995 (On 23 November 1995, in normal daylight visibility, an Airbus A340-300 being operated by Gulf Air on a scheduled international passenger flight from London Heathrow taxied past a Boeing 757-200 being operated by British Airways on a scheduled domestic passenger flight and also departing from London Heathrow which had stopped on a diverging taxiway within the departure holding area for Runway 27R such that the wing tip of the Airbus impacted the tail fin of other aircraft. Two of the 378 occupants of the two aircraft suffered minor injuries and both aircraft were damaged. Passengers were deplaned uneventfully from both aircraft.)
  • SH33 / MD83, Paris CDG France, 2000 (On the 25th of May, 2000 a UK-operated Shorts SD330 waiting for take-off at Paris CDG in normal visibility at night on a taxiway angled in the take-off direction due to its primary function as an exit for opposite direction landings was given a conditional line up clearance by a controller who had erroneously assumed without checking that it was at the runway threshold. After an aircraft which had just landed had passed, the SD330 began to line up unaware that an MD83 had just been cleared in French to take off from the full length and a collision occurred.)
  • A343 / RJ1H, Copenhagen Denmark, 2016 (On 26 December 2016, the wing of an Airbus A340-300 being repositioned by towing at Copenhagen as cleared hit an Avro RJ100 which had stopped short of its stand when taxiing due to the absence of the expected ground crew. The RJ100 had been there for twelve minutes at the time of the collision. The Investigation attributed the collision to differing expectations of the tug driver, the Apron controller and the RJ100 flight crew within an overall context of complacency on the part of the tug driver whilst carrying out what would have been regarded as a routine, non-stressful task.)
  • B789 / A388, Singapore, 2017 (On 30 March 2017, a Boeing 787 taxiing for departure at night at Singapore was involved in a minor collision with a stationary Airbus A380 which had just been pushed back from its gate and was also due to depart. The Investigation found that the conflict occurred because of poor GND controlling by a supervised trainee and had occurred because the 787 crew had exercised insufficient prudence when faced with a potential conflict with the A380. Safety Recommendations made were predominantly related to ATC procedures where it was considered that there was room for improvement in risk management.)
  • B772 / A321, London Heathrow UK, 2007 (On 27 July 2007, a British Airways Boeing 777-200ER collided, during pushback, with a stationary Airbus A321-200. The A321 was awaiting activation of the electronic Stand Entry Guidance (SEG) and expecting entry to its designated gate.)
  • A332/A345, Khartoum Sudan, 2010 (On 30 September 2010, an A330-200 was about to take off from Khartoum at night in accordance with its clearance when signalling from a hand-held flashlight and a radio call from another aircraft led to this not taking place. The other (on-stand) aircraft crew had found that they had been hit by the A330 as it had taxied past en route to the runway. The Investigation found that although there was local awareness that taxiway use and the provision of surface markings at Khartoum did not ensure safe clearance between aircraft, this was not being communicated by NOTAM or ATIS.)

Aircraft/Vehicle Conflict

  • B738, London Stansted UK, 2008 (On 13 November 2008, a Boeing 737-800 with an unserviceable APU was being operated by Ryanair on a passenger flight at night was in collision with a tug after a cross-bleed engine start procedure was initiated prior to the completion of a complex aircraft pushback in rain. As the power was increased on the No 1 engine in preparation for the No 2 engine start, the resulting increase in thrust was greater than the counter-force provided by the tug and the aircraft started to move forwards. The towbar attachment failed and subsequently the aircraft’s No 1 engine impacted the side of the tug, prior to the aircraft brakes being applied.)
  • E190 / Vehicle, Paris CDG France, 2014 (On 19 April 2014, an Embraer 190 collided with the tug which was attempting to begin a pull forward after departure pushback which, exceptionally for the terminal concerned, was prohibited for the gate involved. As a result, severe damage was caused to the lower fuselage. The Investigation found that the relevant instructions were properly documented but ignored when apron services requested a 'push-pull' to minimise departure delay for an adjacent aircraft. Previous similar events had occurred on the same gate and it was suspected that a lack of appreciation of the reasons why the manoeuvre used was prohibited may have been relevant.)
  • FA50 / Vehicle, Moscow Vnukovo Russia, 2014 (On 20 October 2014 a Dassault Falcon 50 taking off at night from Moscow Vnukovo collided with a snow plough which had entered the same runway without clearance shortly after rotation. Control was lost and all occupants died when it was destroyed by impact forces and post crash fire. The uninjured snow plough driver was subsequently discovered to be under the influence of alcohol. The Investigation found that the A-SMGCS effective for over a year prior to the collision had not been properly configured nor had controllers been adequately trained on its use, especially its conflict alerting functions.)
  • Vehicle / PA31, Mackay SE Australia, 2008 (On 29 June 2012, a Piper PA31 taking off from runway 05 on a passenger charter flight just missed hitting an inspection vehicle which had entered the take off runway from an intersecting one contrary to ATC clearance. The overflying aircraft was estimated to have cleared the vehicle by approximately 20 feet and the pilot was unaware it had entered the active runway. The driver had been taking a mobile telephone call at the time and attributed the incursion to distraction. The breached clearance had been given and correctly read back approximately two minutes prior to the conflict occurring.)
  • ATP, Jersey Channel Islands, 1998 (On 9 May 1998, a British Regional Airlines ATP was being pushed back for departure at Jersey in daylight whilst the engines were being started when an excessive engine power setting applied by the flight crew led to the failure of the towbar connection and then to one of the aircraft's carbon fibre propellers striking the tug. A non standard emergency evacuation followed. All aircraft occupants and ground crew were uninjured.)
  • Vehicle / B752, Dublin Ireland, 2009 (On 29 May 2009, a Boeing 757-200 being operated by UK Airline Thomson Airways on a passenger charter flight from Sharm-el-Sheikh, Egypt to Dublin and having just landed on runway 10 at destination at night in poor visibility overtook a small ride-on grass mower moving along the right hand side of the runway in approximate line with the aircraft’s right hand wing tip. The driver of the mower was unaware of the arriving aircraft until he heard it on the runway behind him. Prior to the landing, ATC had been informed that all grass-cutting equipment previously working on and around the runway had cleared it.)
  • SB20, Stockholm Arlanda, 2001 (On 18 December 2001, a Saab 2000 being operated by Air Botnia on scheduled passenger flight from Stockholm to Oulu was taxiing out at night in normal visibility in accordance with its ATC clearance when a car appeared from the left on a roadway and drove at speed on a collision course with the aircraft. In order to avoid a collision, the aircraft had to brake sharply and the aircraft commander saw the car pass under the nose of the aircraft and judged the vehicle’s closest distance to the aircraft to be four to five metres. The car did not stop, could not subsequently be identified and no report was made by the driver or other witnesses. The diagram below taken from the official report shows the site of the conflict - the aircraft was emerging from Ramp ‘G’ to turn left on taxiway ‘Z’ and the broken line shows the roadway which is crossed just before the left turn is commenced.)
  • A320, Dublin Ireland, 2017 (On 27 September 2017, an Airbus A320 being manoeuvred off the departure gate at Dublin by tug was being pulled forward when the tow bar shear pin broke and the tug driver lost control. The tug then collided with the right engine causing significant damage. The tug driver and assisting ground crew were not injured. The Investigation concluded that although the shear pin failure was not attributable to any particular cause, the relative severity of the outcome was probably increased by the wet surface, a forward slope on the ramp and fact that an engine start was in progress.)

Aircraft/Object Conflict

  • B772, Singapore, 2013 (On 19 December 2013, the left engine of a Boeing 777-200 taxiing onto its assigned parking gate after arrival at Singapore ingested an empty cargo container resulting in damage to the engine which was serious enough to require its subsequent removal and replacement. The Investigation found that the aircraft docking guidance system had been in use despite the presence of the ingested container and other obstructions within the clearly marked 'equipment restraint area' of the gate involved. The corresponding ground handling procedures were found to be deficient as were those for ensuring general ramp awareness of a 'live' gate.)
  • B734, Aberdeen UK, 2005 (Significant damage was caused to the tailplane and elevator of a Boeing 737-400 after the pavement beneath them broke up when take off thrust was applied for a standing start from the full length of the runway at Aberdeen. Although in this case neither outcome applied, the Investigation noted that control difficulties consequent upon such damage could lead to an overrun following a high speed rejected takeoff or to compromised flight path control airborne. Safety Recommendations on appropriate regulatory guidance for marking and construction of blast pads and on aircraft performance, rolling take offs and lead-on line marking were made.)
  • B722, Cotonou Benin, 2003 (On 25 December 2003, a Boeing 727-200 being operated by UTA (Guinea) on a scheduled passenger flight from Cotonou to Beirut with a planned stopover at Kufra, Libya, failed to get properly airborne in day VMC from the 2400 metre departure runway and hit a small building 2.45 metres high situated on the extended centreline 118 metres beyond the end of the runway. The right main landing gear broke off and ripped off a part of the trailing edge flaps on the right wing. The airplane then banked slightly to the right and crashed onto the beach where it broke into several pieces and ended up in the sea where the depth of water varied between three and ten metres. Of the estimated 163 occupants, 141 were killed and the remainder seriously injured.)
  • A342, Perth Australia, 2005 (On 24 April 2005, an Airbus A340-200 landed short of the temporarily displaced runway threshold at Perth in good daylight visibility despite their prior awareness that there was such a displacement. The Investigation concluded that the crew had failed to correctly identify the applicable threshold markings because the markings provided were insufficiently clear to them and probably also because of the inappropriately low intensity setting of the temporary PAPI. No other Serious Incidents were reported during the same period of runway works.)
  • B74S, Stockholm Arlanda Sweden, 1996 (On 14 June 1996, a Boeing 747SP being operated by Air China on a scheduled passenger flight from Beijing to Stockholm was arriving on the designated parking gate at destination in normal daylight visibility when it collided with the airbridge. None of the 130 occupants of the aircraft suffered any injury but the aircraft was “substantially damaged” and the airbridge was “damaged”.)
  • B738, Surat India, 2014 (On 6 November 2014, a Boeing 737-800 taking off at night from Surat hit an object as it was approaching 80 knots and the take-off was immediately rejected. On return to the gate substantial damage was found to the left engine and a runway inspection found one dead buffalo and another live one. The runway was reopened after removal of the carcass but the live buffalo was not removed and was seen again by the runway the following day. The Investigation found a history of inadequate perimeter fencing and inadequate runway inspection practices at the airport.)
  • A319, Ibiza Spain, 2016 (On 19 June 2016, an Airbus A320 failed to follow the clearly-specified and ground-marked self-positioning exit from a regularly used gate at Ibiza and its right wing tip collided with the airbridge, damaging both it and the aircraft. The Investigation found that the crew had attempted the necessary left turn using the Operator’s ‘One Engine Taxi Departure’ procedure using the left engine but then failed to follow the marked taxi guideline by a significant margin. It was noted that there had been no other such difficulties with the same departure in the previous four years it had been in use.)
  • A124, Zaragoza Spain, 2010 (On 20 April 2010, the left wing of an Antonov Design Bureau An124-100 which was taxiing in to park after a night landing at Zaragoza under marshalling guidance was in collision with two successive lighting towers on the apron. Both towers and the left wingtip of the aircraft were damaged. The subsequent investigation attributed the collision to allocation of an unsuitable stand and lack of appropriate guidance markings.)

Related Articles

Further Reading