If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Difference between revisions of "Taxiway Collisions"

From SKYbrary Wiki

m (Prevention)
m (Prevention)
Line 61: Line 61:
 
**maintain the centre of the taxi lane
 
**maintain the centre of the taxi lane
 
**be vigilant for taxi lane compromise by another aircraft, vehicle or object
 
**be vigilant for taxi lane compromise by another aircraft, vehicle or object
**do not assume that vehicles will yield right-of-way
+
**not assume that vehicles will yield right-of-way
  
 
==Accidents and Incidents==
 
==Accidents and Incidents==

Revision as of 00:20, 31 May 2018

Article Information
Category: Ground Operations Ground Operations
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary
Ambox content.png
The present article is under construction.
Reader enquiries are welcome, contact the editor: editor@skybrary.aero.
Ambox content.png

Description

An airport is a complex interface between the air and the ground environments, where access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.

This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article On-Gate Collisions provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.

Occurrences

As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:

  • using an incorrect taxiway
  • failing to stop at a taxiway holding point
  • failing to stay on the surface movement control radio frequency or ground frequency as appropriate
  • failing to obtain a clearance before entering an area subject to control.

In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:

  • lead to collision
  • require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties


Most of the remaining occurrences are related to one of the following:

  • aircraft-aircraft collisions or near collisions - collisions can result from:
    • failure to follow taxiway centreline guidance
    • failure to stop prior to a stopbar
    • taxiing at speeds unsuited to the conditions or level of congestion
    • taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
    • taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
  • reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
    • inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
    • failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
  • jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as Unit Load Devices (ULD) to move and strike other aircraft, equipment or personnel

Prevention

Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:

  • Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
    • ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
    • maintain situational awareness
    • operate their vehicle safely and in accordance with all company and airport rules
    • obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
    • yield to aircraft at all times
    • obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
  • Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
    • know the size of the aircraft in tow inclusive of the wingspan
    • be conversant with the normal taxi routes from one airfield location to another
    • understand the stopping distances required for a tug with an aircraft in tow
    • comply with all clearances, especially runway crossing clearances
    • use wing and tail walkers when manoeuvring in congested areas
  • Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
    • provide the appropriate clearance for the requested action
    • ensure that the clearance readback is accurate
    • to the extent possible, monitor the movement visually, via transponder or by use of multilateration equipment to ensure clearance compliance
  • Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
    • request, readback and comply with an appropriate clearance
    • maintain situational awareness
    • taxi at a speed appropriate to the conditions and traffic situation
    • maintain the centre of the taxi lane
    • be vigilant for taxi lane compromise by another aircraft, vehicle or object
    • not assume that vehicles will yield right-of-way

Accidents and Incidents

The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.

Aircraft/Aircraft Conflict

  • B789 / A388, Singapore, 2017 (On 30 March 2017, a Boeing 787 taxiing for departure at night at Singapore was involved in a minor collision with a stationary Airbus A380 which had just been pushed back from its gate and was also due to depart. The Investigation found that the conflict occurred because of poor GND controlling by a supervised trainee and had occurred because the 787 crew had exercised insufficient prudence when faced with a potential conflict with the A380. Safety Recommendations made were predominantly related to ATC procedures where it was considered that there was room for improvement in risk management.)
  • DH8C / P180, Ottawa ON Canada, 2013 (On 1 December 2013, a small aircraft taxing for departure at night was cleared to cross an active runway and did so as a DHC8 was taking off from the same runway. Separation was significant and there was no actual risk of collision. The Investigation found that the GND controller had issued clearance to the taxiing aircraft when he had responsibility for its whole taxi route but had neither updated the aircraft status system nor directly advised of the taxiing aircraft when passing responsibility for part of its cleared route to the TWR controller who therefore remained unaware of it.)
  • FA7X, London City UK, 2016 (On 24 November 2016, a Dassault Falcon 7X being marshalled into an unmarked parking position after arriving at London City Airport was inadvertently directed into a collision with another crewed but stationary aircraft which sustained significant damage. The Investigation found that the apron involved had been congested and that the aircraft was being marshalled in accordance with airport procedures with wing walker assistance but a sharp corrective turn which created a 'wing growth' effect created a collision risk that was signalled at the last minute and incorrectly so by the wing walker involved and was also not seen by the marshaller.)
  • A319 / UNKN, Stockholm Arlanda Sweden, 2011 (On 5 February 2011, an Airbus A319-100 being operated by Air Berlin on a passenger flight departing Stockholm inadvertently proceeded beyond the given clearance limit for runway 19R and although it subsequently stopped before runway entry had occurred, it was by then closer to high speed departing traffic than it should have been. There was no abrupt stop and none of the 103 occupants were injured.)
  • SH33 / MD83, Paris CDG France, 2000 (On the 25th of May, 2000 a UK-operated Shorts SD330 waiting for take-off at Paris CDG in normal visibility at night on a taxiway angled in the take-off direction due to its primary function as an exit for opposite direction landings was given a conditional line up clearance by a controller who had erroneously assumed without checking that it was at the runway threshold. After an aircraft which had just landed had passed, the SD330 began to line up unaware that an MD83 had just been cleared in French to take off from the full length and a collision occurred.)
  • DH8D / B737, Winnipeg Canada, 2014 (On 4 August 2014, the crew of a DHC8-400 departing Winnipeg continued beyond the holding point to which they had been cleared to taxi as a B737 was about to land. ATC observed the daylight incursion visually and instructed the approaching aircraft to go around as the DHC8 stopped within the runway protected area but clear of the actual runway. The Investigation found that the surface marking of the holding point which had been crossed was "significantly degraded" and noted the daily airport inspections had failed to identify this.)
  • B744 / A321, London Heathrow UK, 2004 (On 23 March 2004, an out of service British Airways Boeing 747-400, under tow passed behind a stationary Airbus A321-200 being operated by Irish Airline Aer Lingus on a departing scheduled passenger service in good daylight visibility and the wing tip of the 747 impacted and seriously damaged the rudder of the A321. The aircraft under tow was cleared for the towing movement and the A321 was holding position in accordance with clearance. The towing team were not aware of the collision and initially, there was some doubt in the A321 flight deck about the cause of a ‘shudder’ felt when the impact occurred but the cabin crew of the A321 had felt the impact shudder and upon noticing the nose of the 747 appearing concluded that it had struck their aircraft. Then the First Officer saw the damaged wing tip of the 747 and informed ATC about the possible impact. Later another aircraft, positioned behind the A321, confirmed the rudder damage. At the time of the collision, the two aircraft involved were on different ATC frequencies.)
  • B738/B763, Barcelona Spain, 2011 (On 14 April 2011, a Ryanair Boeing 737-800 failed to leave sufficient clearance when taxiing behind a stationary Boeing 767-300 at Barcelona and the 737 wingtip was in collision with the horizontal stabiliser of the 767, damaging both. The 767 crew were completely unaware of any impact but the 737 crew realised the ‘close proximity’ but dismissed a cabin crew report that a passenger had observed a collision. Both aircraft completed their intended flights without incident after which the damage was discovered, that to the 767 requiring that the aircraft be repaired before further flight.)

Aircraft/Vehicle Conflict

  • ATP, Jersey Channel Islands, 1998 (On 9 May 1998, a British Regional Airlines ATP was being pushed back for departure at Jersey in daylight whilst the engines were being started when an excessive engine power setting applied by the flight crew led to the failure of the towbar connection and then to one of the aircraft's carbon fibre propellers striking the tug. A non standard emergency evacuation followed. All aircraft occupants and ground crew were uninjured.)
  • E190 / Vehicle, Paris CDG France, 2014 (On 19 April 2014, an Embraer 190 collided with the tug which was attempting to begin a pull forward after departure pushback which, exceptionally for the terminal concerned, was prohibited for the gate involved. As a result, severe damage was caused to the lower fuselage. The Investigation found that the relevant instructions were properly documented but ignored when apron services requested a 'push-pull' to minimise departure delay for an adjacent aircraft. Previous similar events had occurred on the same gate and it was suspected that a lack of appreciation of the reasons why the manoeuvre used was prohibited may have been relevant.)
  • A343, Frankfurt Germany, 2008 (On 21 August 2008, an Airbus A340-300 being operated by an undisclosed operator by a German-licensed flight crew on a scheduled passenger flight from Teheran to Frankfurt collided with a stationary bus with only the driver on board whilst approaching the allocated parking gate in normal daylight visibility. The No 4 engine impacted the bus roof as shown in the photograph below reproduced from the official report. None of the occupants of either the aircraft or the bus were injured.)
  • Vehicle / PA31, Mackay SE Australia, 2008 (On 29 June 2012, a Piper PA31 taking off from runway 05 on a passenger charter flight just missed hitting an inspection vehicle which had entered the take off runway from an intersecting one contrary to ATC clearance. The overflying aircraft was estimated to have cleared the vehicle by approximately 20 feet and the pilot was unaware it had entered the active runway. The driver had been taking a mobile telephone call at the time and attributed the incursion to distraction. The breached clearance had been given and correctly read back approximately two minutes prior to the conflict occurring.)
  • B763, Luton UK, 2005 (On 16 February 2005, at Luton Airport, a Boeing B767-300 collided with the tug pulling it forward when the shear pin of the unserviceable tow bar being used to pull the aircraft broke. The aircraft ran onto the tug when the ground crew stopped the tug suddenly. As result of the collision with the tug the aircraft fuselage and landing gear was damaged.)
  • Vehicle / B752, Dublin Ireland, 2009 (On 29 May 2009, a Boeing 757-200 being operated by UK Airline Thomson Airways on a passenger charter flight from Sharm-el-Sheikh, Egypt to Dublin and having just landed on runway 10 at destination at night in poor visibility overtook a small ride-on grass mower moving along the right hand side of the runway in approximate line with the aircraft’s right hand wing tip. The driver of the mower was unaware of the arriving aircraft until he heard it on the runway behind him. Prior to the landing, ATC had been informed that all grass-cutting equipment previously working on and around the runway had cleared it.)
  • Vehicle / E190 / E121, Jersey Channel Islands, 2010 (On 1 June 2010, an Airport RFFS bird scaring vehicle entered the active runway at Jersey in LVP without clearance and remained there for approximately three minutes until ATC became aware. The subsequent Investigation found that the incursion had fortuitously occurred just after an ERJ 190 had landed and had been terminated just as another aircraft had commenced a go around after failure to acquire the prescribed visual reference required to continue to a landing. The context for the failure of the vehicle driver to follow existing procedures was found to be their inadequacy and appropriate changes were implemented.)
  • B738, London Stansted UK, 2008 (On 13 November 2008, a Boeing 737-800 with an unserviceable APU was being operated by Ryanair on a passenger flight at night was in collision with a tug after a cross-bleed engine start procedure was initiated prior to the completion of a complex aircraft pushback in rain. As the power was increased on the No 1 engine in preparation for the No 2 engine start, the resulting increase in thrust was greater than the counter-force provided by the tug and the aircraft started to move forwards. The towbar attachment failed and subsequently the aircraft’s No 1 engine impacted the side of the tug, prior to the aircraft brakes being applied.)

Aircraft/Object Conflict

  • A319, London Heathrow UK, 2007 (On 12 February 2007, an Airbus A319-100 being operated by British Airways on a scheduled passenger flight into London Heathrow made unintended contact in normal daylight visibility with the stationary airbridge at the arrival gate. This followed an emergency stop made after seeing hand signals from ground staff whilst following SEGS indications which appeared to suggest that there was a further 5 metres to run to the correct parking position. There was no damage to the aircraft, only minimal damage to the airbridge and there were no injuries to the aircraft occupants or any other person)
  • B772, Singapore, 2013 (On 19 December 2013, the left engine of a Boeing 777-200 taxiing onto its assigned parking gate after arrival at Singapore ingested an empty cargo container resulting in damage to the engine which was serious enough to require its subsequent removal and replacement. The Investigation found that the aircraft docking guidance system had been in use despite the presence of the ingested container and other obstructions within the clearly marked 'equipment restraint area' of the gate involved. The corresponding ground handling procedures were found to be deficient as were those for ensuring general ramp awareness of a 'live' gate.)
  • AT72, Shannon Ireland, 2014 (On 26 February 2014, an ATR 72-202 which had been substituted for the ATR42 which usually operated a series of night cargo flights was being marshalled out of its parking position with a new flight crew on board when the left wing was in collision with the structure of an adjacent hangar. The Investigation found that the aircraft type had not been changed on the applicable flight plan and ATC were consequently unaware that the aircraft had previously been parked in a position only approved for the use by the usual smaller aircraft type.)
  • B737, Amsterdam Netherlands, 2003 (n 22 December 2003, a Boeing 737-700 being operated by UK Operator Easyjet on a scheduled passenger flight from Amsterdam to London Gatwick was taxiing for departure at night in normal visibility and took a different route to that instructed by ATC. The alternative route was, unknown to the flight crew, covered with ice and as a consequence, an attempt to maintain directional control during a turn was unsuccessful and the aircraft left wing collided with a lamp-post. The collision seriously damaged the aircraft and the lamp post. One passenger sustained slight injuries because of the impact. The diagram below taken from the official investigation report shows the area where the collision occurred.)
  • A124, Zaragoza Spain, 2010 (On 20 April 2010, the left wing of an Antonov Design Bureau An124-100 which was taxiing in to park after a night landing at Zaragoza under marshalling guidance was in collision with two successive lighting towers on the apron. Both towers and the left wingtip of the aircraft were damaged. The subsequent investigation attributed the collision to allocation of an unsuitable stand and lack of appropriate guidance markings.)
  • B722, Cotonou Benin, 2003 (On 25 December 2003, a Boeing 727-200 being operated by UTA (Guinea) on a scheduled passenger flight from Cotonou to Beirut with a planned stopover at Kufra, Libya, failed to get properly airborne in day VMC from the 2400 metre departure runway and hit a small building 2.45 metres high situated on the extended centreline 118 metres beyond the end of the runway. The right main landing gear broke off and ripped off a part of the trailing edge flaps on the right wing. The airplane then banked slightly to the right and crashed onto the beach where it broke into several pieces and ended up in the sea where the depth of water varied between three and ten metres. Of the estimated 163 occupants, 141 were killed and the remainder seriously injured.)
  • B74S, Stockholm Arlanda Sweden, 2006 (On 11 December 2006, a Boeing 747SP being operated by Syrian Air on a scheduled passenger flight from Damascus to Stockholm was arriving on the designated parking gate at destination in normal visibility at night when it collided with the airbridge. None of the 116 occupants of the aircraft suffered any injury but the aircraft was “substantially damaged” and the airbridge was “damaged”.)
  • B738, Surat India, 2014 (On 6 November 2014, a Boeing 737-800 taking off at night from Surat hit an object as it was approaching 80 knots and the take-off was immediately rejected. On return to the gate substantial damage was found to the left engine and a runway inspection found one dead buffalo and another live one. The runway was reopened after removal of the carcass but the live buffalo was not removed and was seen again by the runway the following day. The Investigation found a history of inadequate perimeter fencing and inadequate runway inspection practices at the airport.)

Related Articles

Further Reading

[[Category:Ground Operations [[Category:Operational Issues