If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Difference between revisions of "Taxiway Collisions"

From SKYbrary Wiki

m (Prevention)
m (Prevention)
Line 54: Line 54:
 
**provide the appropriate clearance for the requested action
 
**provide the appropriate clearance for the requested action
 
**ensure that the clearance readback is accurate
 
**ensure that the clearance readback is accurate
**to the extent possible, monitor the movement visually or via transponder or [[Multilateration|multilateration equipment]] to ensure compliance with the clearance
+
**to the extent possible, monitor the movement visually, via transponder or by use of [[Multilateration|multilateration equipment]] to ensure clearance compliance  
 
*Pilots -
 
*Pilots -
  

Revision as of 23:47, 30 May 2018

Article Information
Category: Ground Operations Ground Operations
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary
Ambox content.png
The present article is under construction.
Reader enquiries are welcome, contact the editor: editor@skybrary.aero.
Ambox content.png

Description

An airport is a complex interface between the air and the ground environments, where access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.

This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article On-Gate Collisions provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.

Occurrences

As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:

  • using an incorrect taxiway
  • failing to stop at a taxiway holding point
  • failing to stay on the surface movement control radio frequency or ground frequency as appropriate
  • failing to obtain a clearance before entering an area subject to control.

In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:

  • lead to collision
  • require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties


Most of the remaining occurrences are related to one of the following:

  • aircraft-aircraft collisions or near collisions - collisions can result from:
    • failure to follow taxiway centreline guidance
    • failure to stop prior to a stopbar
    • taxiing at speeds unsuited to the conditions or level of congestion
    • taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
    • taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
  • reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
    • inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
    • failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
  • jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as Unit Load Devices (ULD) to move and strike other aircraft, equipment or personnel

Prevention

Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:

  • Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
    • ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
    • maintain situational awareness
    • operate their vehicle safely and in accordance with all company and airport rules
    • obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
    • yield to aircraft at all times
    • obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
  • Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
    • know the size of the aircraft in tow inclusive of the wingspan
    • be conversant with the normal taxi routes from one airfield location to another
    • understand the stopping distances required for a tug with an aircraft in tow
    • comply with all clearances, especially runway crossing clearances
    • use wing and tail walkers when manoeuvring in congested areas
  • Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
    • provide the appropriate clearance for the requested action
    • ensure that the clearance readback is accurate
    • to the extent possible, monitor the movement visually, via transponder or by use of multilateration equipment to ensure clearance compliance
  • Pilots -

Accidents and Incidents

The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.

Aircraft/Aircraft Conflict

  • FA7X, London City UK, 2016 (On 24 November 2016, a Dassault Falcon 7X being marshalled into an unmarked parking position after arriving at London City Airport was inadvertently directed into a collision with another crewed but stationary aircraft which sustained significant damage. The Investigation found that the apron involved had been congested and that the aircraft was being marshalled in accordance with airport procedures with wing walker assistance but a sharp corrective turn which created a 'wing growth' effect created a collision risk that was signalled at the last minute and incorrectly so by the wing walker involved and was also not seen by the marshaller.)
  • SH33 / MD83, Paris CDG France, 2000 (On the 25th of May, 2000 a UK-operated Shorts SD330 waiting for take-off at Paris CDG in normal visibility at night on a taxiway angled in the take-off direction due to its primary function as an exit for opposite direction landings was given a conditional line up clearance by a controller who had erroneously assumed without checking that it was at the runway threshold. After an aircraft which had just landed had passed, the SD330 began to line up unaware that an MD83 had just been cleared in French to take off from the full length and a collision occurred.)
  • B772 / A321, London Heathrow UK, 2007 (On 27 July 2007, a British Airways Boeing 777-200ER collided, during pushback, with a stationary Airbus A321-200. The A321 was awaiting activation of the electronic Stand Entry Guidance (SEG) and expecting entry to its designated gate.)
  • B738/B738, Girona Spain, 2010 (On 14 January 2010, two Ryanair Boeing 737-800 aircraft were operating scheduled passenger flights from Girona to Las Palmas and Turin respectively and had taxied from adjacent gates at Girona in normal day visibility in quick succession. The Turin-bound aircraft taxied first but because it was early at the holding point for its CTOT, the other aircraft was designated first for take off and during the overtaking manoeuvre in the holding area, the wing tip of the moving Las Palmas aircraft hit the horizontal stabiliser of the Turin bound aircraft causing minor and substantial damage to the respective aircraft. None of the respective 81 and 77 occupants were injured and both aircraft taxied back to their gates.)
  • A343 / B744, London Heathrow UK, 2007 (On 15 October 2007, an Airbus 340-300 being operated on a scheduled passenger flight by Air Lanka with a heavy crew in the flight deck was taxiing towards the departure runway at London Heathrow at night in normal visibility when the right wing tip hit and sheared off the left hand winglet of a stationary British Airways Boeing 747-400 which was in a queue on an adjacent taxiway. The Airbus 340 sustained only minor damage to the right winglet and navigation light.)
  • A343 / B763, Barcelona Spain, 2014 (On 5 July 2014, an Airbus A340-300 taxiing for departure at Barcelona was cleared across an active runway in front of an approaching Boeing 767 with landing clearance on the same runway by a Ground Controller unaware that the runway was active. Sighting by both aircraft resulted in an accelerated crossing and a very low go around. The Investigation noted the twice-daily runway configuration change made due to noise abatement reasons was imminent. It was also noted that airport procedure involved use of stop bars even on inactive runways and that their operation was then the responsibility of ground controllers.)
  • B733 / DH8D, Fort McMurray Canada, 2014 (On 4 August 2014, a Boeing 737-300 making a day visual approach at Fort McMurray after receiving an ILS/DME clearance lined up on a recently-constructed parallel taxiway and its crew were only alerted to their error shortly before touchdown by the crew of a DHC8-400 which was taxiing along the same taxiway in the opposite direction. This resulted in a go around being commenced from 46 feet agl. The Investigation noted that both pilots had been looking out during the final stages of the approach and had ignored important SOPs including that for a mandatory go around from an unstable approach.)
  • B752 / CRJ7, San Francisco CA USA, 2008 (On 13 January 2008, a Boeing 757-200 and a Bombardier CL-600 received pushback clearance from two adjacent terminal gates within 41 seconds. The ground controller believed there was room for both aircraft to pushback. During the procedure both aircraft were damaged as their tails collided. The pushback procedure of the Boeing was performed without wing-walkers or tail-walkers.)

Aircraft/Vehicle Conflict

  • A343, Frankfurt Germany, 2008 (On 21 August 2008, an Airbus A340-300 being operated by an undisclosed operator by a German-licensed flight crew on a scheduled passenger flight from Teheran to Frankfurt collided with a stationary bus with only the driver on board whilst approaching the allocated parking gate in normal daylight visibility. The No 4 engine impacted the bus roof as shown in the photograph below reproduced from the official report. None of the occupants of either the aircraft or the bus were injured.)
  • B763, Luton UK, 2005 (On 16 February 2005, at Luton Airport, a Boeing B767-300 collided with the tug pulling it forward when the shear pin of the unserviceable tow bar being used to pull the aircraft broke. The aircraft ran onto the tug when the ground crew stopped the tug suddenly. As result of the collision with the tug the aircraft fuselage and landing gear was damaged.)
  • E190 / Vehicle, Paris CDG France, 2014 (On 19 April 2014, an Embraer 190 collided with the tug which was attempting to begin a pull forward after departure pushback which, exceptionally for the terminal concerned, was prohibited for the gate involved. As a result, severe damage was caused to the lower fuselage. The Investigation found that the relevant instructions were properly documented but ignored when apron services requested a 'push-pull' to minimise departure delay for an adjacent aircraft. Previous similar events had occurred on the same gate and it was suspected that a lack of appreciation of the reasons why the manoeuvre used was prohibited may have been relevant.)
  • Vehicle / PA31, Mackay SE Australia, 2008 (On 29 June 2012, a Piper PA31 taking off from runway 05 on a passenger charter flight just missed hitting an inspection vehicle which had entered the take off runway from an intersecting one contrary to ATC clearance. The overflying aircraft was estimated to have cleared the vehicle by approximately 20 feet and the pilot was unaware it had entered the active runway. The driver had been taking a mobile telephone call at the time and attributed the incursion to distraction. The breached clearance had been given and correctly read back approximately two minutes prior to the conflict occurring.)
  • Vehicle / B752, Dublin Ireland, 2009 (On 29 May 2009, a Boeing 757-200 being operated by UK Airline Thomson Airways on a passenger charter flight from Sharm-el-Sheikh, Egypt to Dublin and having just landed on runway 10 at destination at night in poor visibility overtook a small ride-on grass mower moving along the right hand side of the runway in approximate line with the aircraft’s right hand wing tip. The driver of the mower was unaware of the arriving aircraft until he heard it on the runway behind him. Prior to the landing, ATC had been informed that all grass-cutting equipment previously working on and around the runway had cleared it.)
  • ATP, Jersey Channel Islands, 1998 (On 9 May 1998, a British Regional Airlines ATP was being pushed back for departure at Jersey in daylight whilst the engines were being started when an excessive engine power setting applied by the flight crew led to the failure of the towbar connection and then to one of the aircraft's carbon fibre propellers striking the tug. A non standard emergency evacuation followed. All aircraft occupants and ground crew were uninjured.)
  • A320, Dublin Ireland, 2017 (On 27 September 2017, an Airbus A320 being manoeuvred off the departure gate at Dublin by tug was being pulled forward when the tow bar shear pin broke and the tug driver lost control. The tug then collided with the right engine causing significant damage. The tug driver and assisting ground crew were not injured. The Investigation concluded that although the shear pin failure was not attributable to any particular cause, the relative severity of the outcome was probably increased by the wet surface, a forward slope on the ramp and fact that an engine start was in progress.)
  • B737, Gran Canaria Spain, 2016 (On 7 January 2016, a Boeing 737-700 was inadvertently cleared by ATC to take off on a closed runway. The take-off was commenced with a vehicle visible ahead at the runway edge. When ATC realised the situation, a 'stop' instruction was issued and the aircraft did so after travelling approximately 740 metres. Investigation attributed the controller error to "lost situational awareness". It also noted prior pilot and controller awareness that the runway used was closed and that the pilots had, on the basis of the take-off clearance crossed a lit red stop bar to enter the runway without explicit permission.)

Aircraft/Object Conflict

  • DH8D, Hubli India, 2015 (On 8 March 2015, directional control of a Bombardier DHC 8-400 which had just completed a normal approach and landing was lost and the aircraft departed the side of the runway following the collapse of both the left main and nose landing gear assemblies. The Investigation found that after being allowed to drift to the side of the runway without corrective action, the previously airworthy aircraft had hit a non-frangible edge light and the left main gear and then the nose landing gear had collapsed with a complete loss of directional control. The aircraft had then exited the side of the runway sustaining further damage.)
  • B74S, Stockholm Arlanda Sweden, 2006 (On 11 December 2006, a Boeing 747SP being operated by Syrian Air on a scheduled passenger flight from Damascus to Stockholm was arriving on the designated parking gate at destination in normal visibility at night when it collided with the airbridge. None of the 116 occupants of the aircraft suffered any injury but the aircraft was “substantially damaged” and the airbridge was “damaged”.)
  • A346, Toulouse France, 2007 (During ground running of engines, the aircraft impacted a concrete wall at a ground speed of 30 kts following unintended movement and the aircraft was wrecked.)
  • RJ85, Helsinki Finland 2010 (On 12 June 2010, a requested 22R runway inspection at Helsinki in normal daylight visibility carried out after a severe engine failure during the take off roll had led an Avro RJ85 being operated by Finnish Airline Blue1 on a scheduled passenger flight to Copenhagen to reject that take off at high speed. This inspection had not detected significant debris deposited on the runway during the sudden and severe engine failure. Two passenger aircraft, one being operated by Finnair to Dubrovnik, Croatia and the other being operated by Swedish airline TUIfly Nordic to Rhodes, Greece then departed the same runway before a re-inspection disclosed the debris and it was removed. Neither of the aircraft which used the runway prior to debris removal were subsequently found to have suffered any damage but both were advised of the situation en route.)
  • B74S, Stockholm Arlanda Sweden, 1996 (On 14 June 1996, a Boeing 747SP being operated by Air China on a scheduled passenger flight from Beijing to Stockholm was arriving on the designated parking gate at destination in normal daylight visibility when it collided with the airbridge. None of the 130 occupants of the aircraft suffered any injury but the aircraft was “substantially damaged” and the airbridge was “damaged”.)
  • A320, Lisbon Portugal, 2015 (On 19 May 2015, an Airbus A319 crew attempted to taxi into a nose-in parking position at Lisbon despite the fact that the APIS, although switched on, was clearly malfunctioning whilst not displaying an unequivocal ‘STOP’. The aircraft continued 6 metres past the applicable apron ground marking by which time it had hit the airbridge. The marshaller in attendance to oversee the arrival did not signal the aircraft or manually select the APIS ‘STOP’ instruction. The APIS had failed to detect the dark-liveried aircraft and the non-display of a steady ‘STOP’ indication was independently attributed to a pre-existing system fault.)
  • A124, Zaragoza Spain, 2010 (On 20 April 2010, the left wing of an Antonov Design Bureau An124-100 which was taxiing in to park after a night landing at Zaragoza under marshalling guidance was in collision with two successive lighting towers on the apron. Both towers and the left wingtip of the aircraft were damaged. The subsequent investigation attributed the collision to allocation of an unsuitable stand and lack of appropriate guidance markings.)
  • B734, Aberdeen UK, 2005 (Significant damage was caused to the tailplane and elevator of a Boeing 737-400 after the pavement beneath them broke up when take off thrust was applied for a standing start from the full length of the runway at Aberdeen. Although in this case neither outcome applied, the Investigation noted that control difficulties consequent upon such damage could lead to an overrun following a high speed rejected takeoff or to compromised flight path control airborne. Safety Recommendations on appropriate regulatory guidance for marking and construction of blast pads and on aircraft performance, rolling take offs and lead-on line marking were made.)

Related Articles

Further Reading

[[Category:Ground Operations [[Category:Operational Issues