If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user


Rossby Waves

From SKYbrary Wiki

Revision as of 10:21, 5 March 2020 by Integration.Manager (talk | contribs) (Integration.Manager moved page Work in progress:Rossby Waves to Rossby Waves without leaving a redirect)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Article Information
Category: Weather Weather
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary
Tag(s) Atmosphere


Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Carl-Gustaf Arvid Rossby. They are observed in the atmospheres and oceans of planets owing to the rotation of the planet. This article focuses on atmospheric Rossby waves on Earth, giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream.

Rossby Waves in the Northern Hemisphere. Source: Wikicommons

Atmospheric Rossby Waves

Atmospheric Rossby waves result from the conservation of potential vorticity and are influenced by the Coriolis effect and pressure gradient. The rotation causes fluids to turn to the right as they move in the northern hemisphere and to the left in the southern hemisphere. For example, a fluid that moves from the equator toward the north pole will deviate toward the east; a fluid moving toward the equator from the north will deviate toward the west. These deviations are caused by the Coriolis force and conservation of potential vorticity which leads to changes of relative vorticity. This is analogous to conservation of angular momentum in mechanics. In planetary atmospheres, including Earth, Rossby waves are due to the variation in the Coriolis effect with latitude.

One can identify a terrestrial Rossby wave as its phase velocity, marked by its wave crest, always has a westward component. However, the collected set of Rossby waves may appear to move in either direction with what is known as its group velocity. In general, shorter waves have an eastward group velocity and long waves a westward group velocity.

The terms "barotropic" and "baroclinic" are used to distinguish the vertical structure of Rossby waves. Barotropic Rossby waves do not vary in the vertical, and have the fastest propagation speeds. The baroclinic wave modes, on the other hand, do vary in the vertical. They are also slower, with speeds of only a few centimeters per second or less.

Most investigations of Rossby waves have been done on those in Earth's atmosphere. Rossby waves in the Earth's atmosphere are easy to observe as (usually 4-6) large-scale meanders of the jet stream. When these deviations become very pronounced, masses of cold or warm air detach, and become low-strength cyclones and anticyclones, respectively, and are responsible for day-to-day weather patterns at mid-latitudes. The action of Rossby waves partially explains why eastern continental edges in the Northern Hemisphere, such as the Northeast United States and Eastern Canada, are colder than Western Europe at the same latitudes.

Poleward-propagating atmospheric waves

Deep convection (heat transfer) to the troposphere is enhanced over very warm sea surfaces in the tropics, such as during El Niño events. This tropical forcing generates atmospheric Rossby waves that have a poleward and eastward migration.

Poleward-propagating Rossby waves explain many of the observed statistical connections between low- and high-latitude climates. One such phenomenon is sudden stratospheric warming. Poleward-propagating Rossby waves are an important and unambiguous part of the variability in the Northern Hemisphere, as expressed in the Pacific North America pattern. Similar mechanisms apply in the Southern Hemisphere and partly explain the strong variability in the Amundsen Sea region of Antarctica. In 2011, a Nature Geoscience study using general circulation models linked Pacific Rossby waves generated by increasing central tropical Pacific temperatures to warming of the Amundsen Sea region, leading to winter and spring continental warming of Ellsworth Land and Marie Byrd Land in West Antarctica via an increase in advection.

Related Articles

Further Reading