If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Cabin Fumes from Non-Fire Sources

From SKYbrary Wiki

Non Combustion-related Fumes


Article Information
Category: Fire Smoke and Fumes Fire Smoke and Fumes
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

Fumes from various non-fire related sources may sometimes be experienced within the cabins of passenger aircraft.

Sources

Most modern passenger aircraft are equipped with pressurised, climate controlled, cabins. In spite of the aircraft designers’ intentions, unwanted fumes frequently permeate the interior of the aircraft. Open doors and hatches as well as certain on-board sources can introduce fumes to the cabin environment. However the usual path of entry for fumes is via the aircraft pressurisation and air conditioning systems.

The majority of passenger aircraft utilise bleed air from the engine or Auxiliary Power Unit to pressurize and heat or cool the aircraft cabin. As a consequence, any contaminants introduced into the engine/APU compressor prior to the point from which the bleed air is extracted may result in the appearance of corresponding fumes in the passenger cabin and flight deck.

Accidents and Incidents

Cabin air contamination

  • B763, Frankfurt Germany, 2007 (On 20 August 2007, at Frankfurt, while a Boeing 767-300 was taxiing to its parking position, thick smoke developed in the passenger cabin. All passengers and the crew were able to leave the aircraft at the gate without further incident.)
  • B744, Phoenix USA, 2009 (On 10 January 2009, a Boeing 747-400 being operated by British Airways on a scheduled passenger flight from Phoenix USA to London had been pushed back from the gate in normal daylight visibility and the engines start was continuing when fumes and smoke were observed in the cabin and flight deck. The aircraft commander decided to return to the stand but there was some delay while the tug was reconnected and the movement accomplished. The intensity of the fumes increased and as the aircraft came to a halt on the stand an emergency evacuation was ordered.)
  • A320, en-route, Kalmar County Sweden, 2009 (On 2 March 2009, communication difficulties and inadequate operator procedures led to an Airbus A320-200 being de-iced inappropriately prior to departure from Vasteras and fumes entered the air conditioning system via the APU. Although steps were then taken before departure in an attempt to clear the contamination, it returned once airborne. The flight crew decided to don their oxygen masks and complete the flight to Poznan. Similar fumes in the passenger cabin led to only temporary effects which were alleviated by the use of therapeutic oxygen. The Investigation concluded that no health risks arose from exposure to the fumes involved.)
  • A320, vicinity New York JFK NY USA, 2007 (On 10 February 2007, smoke was observed coming from an overhead locker on an Airbus A320 which had just departed from New York JFK. It was successfully dealt by cabin crew fire extinguisher use whilst an emergency was declared and a precautionary air turn back made with the aircraft back on the ground six minutes later. The subsequent investigation attributed the fire to a short circuit of unexplained origin in one of a number of spare lithium batteries contained in a passenger's camera case, some packaged an some loose which had led to three of then sustaining fire damage.)
  • E195, en-route, Irish Sea UK, 2008 (On 1 August 2008, an en-route Embraer 195 despatched with one air conditioning pack inoperative lost all air conditioning and pressurisation when the other pack’s Air Cycle Machine (ACM) failed, releasing smoke and fumes into the aircraft. A MAYDAY diversion was made to the Isle of Man without further event. The Investigation found that the ACM failed due to rotor seizure caused by turbine blade root fatigue, the same failure which had led the other air conditioning system to fail failure four days earlier. It was understood that a modified ACM turbine housing was being developed to address the problem.)

Related Articles

Further Reading