If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Cabin Fumes from Non-Fire Sources

From SKYbrary Wiki

Revision as of 09:50, 24 July 2018 by Editor1 (talk | contribs)

Non Combustion-related Fumes


Article Information
Category: Fire Smoke and Fumes Fire Smoke and Fumes
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

Fumes from various non-fire related sources may sometimes be experienced within the cabins of passenger aircraft.

Sources

Most modern passenger aircraft are equipped with pressurised, climate controlled, cabins. In spite of the aircraft designers’ intentions, unwanted fumes frequently permeate the interior of the aircraft. Open doors and hatches as well as certain on-board sources can introduce fumes to the cabin environment. However the usual path of entry for fumes is via the aircraft pressurisation and air conditioning systems.

The majority of passenger aircraft utilise bleed air from the engine or Auxiliary Power Unit to pressurize and heat or cool the aircraft cabin. As a consequence, any contaminants introduced into the engine/APU compressor prior to the point from which the bleed air is extracted may result in the appearance of corresponding fumes in the passenger cabin and flight deck.

Accidents and Incidents

Cabin air contamination

  • E190, en-route, southwest of Turku Finland, 2017 (On 3 December 2017, an Embraer E190 en-route at FL310 was already turning back to Helsinki because of a burning smell in the flight deck when smoke in the cabin was followed by smoke in the flight deck. A MAYDAY was declared to ATC reporting “fire on board” and their suggested diversion to Turku was accepted. The situation initially improved but worsened after landing prompting a precautionary emergency evacuation. The Investigation subsequently attributed the smoke to a malfunctioning air cycle machine. Issues with inaccessible cabin crew smoke hoods and with the conduct and aftermath of the evacuation were also identified.)
  • B763, Montreal Quebec Canada, 2013 (On 4 November 2013, smoke began to appear in the passenger cabin of a Boeing 767 which had just begun disembarking its 243 passengers via an airbridge after arriving at Montreal. The source was found to be a belt loader in position at the rear of the aircraft which had caught fire. Emergency evacuation using the airbridge only was ordered by the aircraft commander but cabin conditions led to other exits being used too. The fire was caused by a fuel leak and absence of an emergency stop button had prevented it being extinguished until the airport fire service arrived.)
  • B734, vicinity East Midlands UK, 1989 (On 8 January 1989, the crew of a British Midland Boeing 737-400 lost control of their aircraft due to lack of engine thrust shortly before reaching a planned en route diversion being made after an engine malfunction and it was destroyed by terrain impact with fatal or serious injuries sustained by almost all the occupants. The crew response to the malfunction had been followed by their shutdown of the serviceable rather the malfunctioning engine. The Investigation concluded that the accident was entirely the consequence of inappropriate crew response to a non-critical loss of powerplant airworthiness.)
  • B763, Frankfurt Germany, 2007 (On 20 August 2007, at Frankfurt, while a Boeing 767-300 was taxiing to its parking position, thick smoke developed in the passenger cabin. All passengers and the crew were able to leave the aircraft at the gate without further incident.)
  • E195, en-route, Irish Sea UK, 2008 (On 1 August 2008, an en-route Embraer 195 despatched with one air conditioning pack inoperative lost all air conditioning and pressurisation when the other pack’s Air Cycle Machine (ACM) failed, releasing smoke and fumes into the aircraft. A MAYDAY diversion was made to the Isle of Man without further event. The Investigation found that the ACM failed due to rotor seizure caused by turbine blade root fatigue, the same failure which had led the other air conditioning system to fail failure four days earlier. It was understood that a modified ACM turbine housing was being developed to address the problem.)

Related Articles

Further Reading