If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Cabin Fumes from Non-Fire Sources

From SKYbrary Wiki

Revision as of 09:50, 24 July 2018 by Editor1 (talk | contribs)

Non Combustion-related Fumes


Article Information
Category: Fire Smoke and Fumes Fire Smoke and Fumes
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

Fumes from various non-fire related sources may sometimes be experienced within the cabins of passenger aircraft.

Sources

Most modern passenger aircraft are equipped with pressurised, climate controlled, cabins. In spite of the aircraft designers’ intentions, unwanted fumes frequently permeate the interior of the aircraft. Open doors and hatches as well as certain on-board sources can introduce fumes to the cabin environment. However the usual path of entry for fumes is via the aircraft pressurisation and air conditioning systems.

The majority of passenger aircraft utilise bleed air from the engine or Auxiliary Power Unit to pressurize and heat or cool the aircraft cabin. As a consequence, any contaminants introduced into the engine/APU compressor prior to the point from which the bleed air is extracted may result in the appearance of corresponding fumes in the passenger cabin and flight deck.

Accidents and Incidents

Cabin air contamination

  • E190, en-route, southwest of Turku Finland, 2017 (On 3 December 2017, an Embraer E190 en-route at FL310 was already turning back to Helsinki because of a burning smell in the flight deck when smoke in the cabin was followed by smoke in the flight deck. A MAYDAY was declared to ATC reporting “fire on board” and their suggested diversion to Turku was accepted. The situation initially improved but worsened after landing prompting a precautionary emergency evacuation. The Investigation subsequently attributed the smoke to a malfunctioning air cycle machine. Issues with inaccessible cabin crew smoke hoods and with the conduct and aftermath of the evacuation were also identified.)
  • B744, vicinity Dubai UAE, 2010 (On 3 September 2010, a UPS Boeing 747-400 freighter flight crew became aware of a main deck cargo fire 22 minutes after take off from Dubai. An emergency was declared and an air turn back commenced but a rapid build up of smoke on the flight deck made it increasingly difficult to see on the flight deck and to control the aircraft. An unsuccessful attempt to land at Dubai was followed by complete loss of flight control authority due to fire damage and terrain impact followed. The fire was attributed to auto-ignition of undeclared Dangerous Goods originally loaded in Hong Kong.)
  • A320, vicinity New York JFK NY USA, 2007 (On 10 February 2007, smoke was observed coming from an overhead locker on an Airbus A320 which had just departed from New York JFK. It was successfully dealt by cabin crew fire extinguisher use whilst an emergency was declared and a precautionary air turn back made with the aircraft back on the ground six minutes later. The subsequent investigation attributed the fire to a short circuit of unexplained origin in one of a number of spare lithium batteries contained in a passenger's camera case, some packaged an some loose which had led to three of then sustaining fire damage.)
  • B763, Montreal Quebec Canada, 2013 (On 4 November 2013, smoke began to appear in the passenger cabin of a Boeing 767 which had just begun disembarking its 243 passengers via an airbridge after arriving at Montreal. The source was found to be a belt loader in position at the rear of the aircraft which had caught fire. Emergency evacuation using the airbridge only was ordered by the aircraft commander but cabin conditions led to other exits being used too. The fire was caused by a fuel leak and absence of an emergency stop button had prevented it being extinguished until the airport fire service arrived.)
  • B752, en-route, North Sea, 2006 (On 22 October 2006 a blue haze was observed in the passenger cabin of a Boeing 757-200, operated by Thomsonfly, shortly after reaching cruise altitude on a scheduled passenger flight from Newcastle to Larnaca. A precautionary diversion was made to London Stansted, where an emergency evacuation was carried out successfully.)

Related Articles

Further Reading