If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Aircraft Pressurisation Systems

From SKYbrary Wiki

Article Information
Category: Flight Technical Flight Technical
Content source: SKYbrary About SKYbrary
Content control: EUROCONTROL EUROCONTROL

Definition

A system which ensures the comfort and safety of crew and passengers by controlling the cabin pressure and the exchange of air from the inside of the aircraft to the outside.

Discussion

Aircraft engines become more efficient with increase in altitude, burning less fuel for a given airspeed. In addition, by flying above weather and associated turbulence, the flight is smoother and the aircraft less fatigued. Crews will therefore normally fly as close to the aircraft’s Cruise Ceiling as they can depending on flight rules and any other constraints such as the aircraft oxygen system. In order to be able to fly at high attitudes, the aircraft needs to be pressurised so that the crew and passengers can breathe without the need for supplemental Oxygen.

The cabin and cargo holds (or baggage compartments) on most aircraft are contained within a sealed unit which is capable of containing air under pressure higher than the Ambient Pressure outside of the aircraft. Bleed Air from the turbine engines is used to pressurise the cabin and air is released from the cabin by an Outflow Valve. By managing the flow of air through the outflow valve, using a cabin pressure regulator, the pressure within the aircraft can be increased or decreased as required either to maintain a set Differential Pressure or a set Cabin Altitude.

In practice, as an aircraft climbs, for the comfort of the passengers, the pressurisation system will gradually increase the cabin altitude and the differential pressure at the same time. When the maximum differential pressure is reached then, if the aircraft continues to climb, the differential pressure will be maintained while the cabin altitude climbs. The maximum cruise altitude will be limited by the need to keep the cabin altitude at or below 8,000 ft.

A safety valve:

  • acts as a relief valve, releasing air from the cabin to prevent the cabin pressure from exceeding the maximum differential pressure,
  • acts a vacuum relief valve, allowing air into the cabin when the ambient pressure exceeds the cabin pressure, and
  • acts as a dump valve, allowing the crew to dump cabin air manually.

A Cabin Altimeter, Differential Pressure Gauge, and Cabin Rate of Climb gauge help the crew to monitor the aircraft pressurisation.

Related Articles

Accident & Incidents

Events held on the SKYbrary A&I database which include reference to the air conditioning system include:

  • B738, en-route, southern Austria, 2010 (On 9 May 2010, Boeing 737-800 being operated by Swedish operator Viking Airlines on a public transport charter flight from Sharm el Sheikh, Egypt to Manchester UK and which had earlier suffered a malfunction which affected the level of redundancy in the aircraft pressurisation system, experienced a failure of the single air conditioning pack in use when over southern Austria and an emergency descent and en route diversion to Vienna were made. There were no injuries to any of the 196 occupants.)
  • B773, en-route, east northeast of Anchorage AK USA, 2015 (On 30 December 2015, a Boeing 777-300 making an eastbound Pacific crossing en-route to Toronto encountered forecast moderate to severe clear air turbulence associated with a jet stream over mountainous terrain. Some passengers remained unsecured and were injured, one seriously and the flight diverted to Calgary. The Investigation found that crew action had mitigated the injury risk but that more could have been achieved. It was also found that the pilots had not been in possession of all relevant information and that failure of part of the air conditioning system during the turbulence was due to an improperly installed clamp.)
  • A320, en-route, west southwest of Karachi Pakistan, 2018 (On 5 March 2018, the crew of an Airbus A320 in descent towards Karachi observed a slow but continuous drop in cabin pressure which eventually triggered an excessive cabin altitude warning which led them to don oxygen masks, commence an emergency descent and declare a PAN to ATC until the situation had been normalised. The Investigation found that the cause was the processing of internally corrupted data in the active cabin pressure controller which had used a landing field elevation of over 10,000 feet. It noted that Airbus is developing a modified controller that will prevent erroneous data calculations occurring.)
  • A319, en-route, east of Dublin Ireland, 2008 (On 27 May 2008 an Airbus A319-100 being operated by Germanwings on a scheduled passenger flight from Dublin to Cologne was 30nm east of Dublin and passing FL100 in the climb in unrecorded daylight flight conditions when the Purser advised the flight crew by intercom that “something was wrong”, that almost all the passengers had fallen asleep, and that at least one of the cabin crew seated nearby was “unresponsive”. Following a review of this information and a check of the ECAM pressurisation page which showed no warnings or failures, a decision was taken to don oxygen masks and the aircraft returned uneventfully to Dublin without any further adverse effects on the 125 occupants. A MAYDAY was declared during the diversion.)
  • B744, en-route, South China Sea, 2008 (On 25 July 2008, a Boeing 747 suffered a rapid depressurisation of the cabin following the sudden failure of an oxygen cylinder, which had ruptured the aircraft's pressure hull. The incident occurred 475 km north-west of Manila, Philippines.)

... further results