If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user


Aircraft Pressurisation Systems

From SKYbrary Wiki

Revision as of 14:07, 26 January 2017 by Editor2 (talk | contribs) (Discussion)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Article Information
Category: Flight Technical Flight Technical
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary


A system which ensures the comfort and safety of crew and passengers by controlling the cabin pressure and the exchange of air from the inside of the aircraft to the outside.


Aircraft engines become more efficient with increase in altitude, burning less fuel for a given airspeed. In addition, by flying above weather and associated turbulence, the flight is smoother and the aircraft less fatigued. Crews will therefore normally fly as close to the aircraft’s Cruise Ceiling as they can depending on flight rules and any other constraints such as the aircraft oxygen system. In order to be able to fly at high attitudes, the aircraft needs to be pressurised so that the crew and passengers can breathe without the need for supplemental oxygen.

The cabin and cargo holds (or baggage compartments) on most aircraft are contained within a sealed unit which is capable of containing air under pressure higher than the Ambient Pressure outside of the aircraft. Bleed Air from the turbine engines is used to pressurise the cabin and air is released from the cabin by an Outflow Valve. By using a cabin pressure regulator, to manage the flow of air through the outflow valve, the pressure within the aircraft can be increased or decreased as required, either to maintain a set Differential Pressure or a set Cabin Altitude.

In practice, as an aircraft climbs, for the comfort of the passengers, the pressurisation system will gradually increase the cabin altitude and the differential pressure at the same time. If the aircraft continues to climb once the maximum differential pressure is reached, the differential pressure will be maintained while the cabin altitude climbs. The maximum cruise altitude will be limited by the need to keep the cabin altitude at or below 8,000 ft.

A safety valve:

  • acts as a relief valve, releasing air from the cabin to prevent the cabin pressure from exceeding the maximum differential pressure,
  • acts a vacuum relief valve, allowing air into the cabin when the ambient pressure exceeds the cabin pressure, and
  • acts as a dump valve, allowing the crew to dump cabin air manually.

A Cabin Altimeter, Differential Pressure Gauge, and Cabin Rate of Climb gauge help the crew to monitor the aircraft pressurisation.

Related Articles

Accident & Incidents

Events held on the SKYbrary A&I database which include reference to the air conditioning system include:

  • A320, en route, north of Marseilles France, 2013 (On 12 September 2013, pressurisation control failed in an A320 after a bleed air fault occurred following dispatch with one of the two pneumatic systems deactivated under MEL provisions. The Investigation found that the cause of the in-flight failure was addressed by an optional SB not yet incorporated. Also, relevant crew response SOPs lacking clarity and a delay in provision of a revised MEL procedure meant that use of the single system had not been optimal and after a necessary progressive descent to FL100 was delayed by inadequate ATC response, and ATC failure to respond to a PAN call required it to be upgraded to MAYDAY.)
  • B789, en-route, eastern Belgium, 2017 (On 29 April 2017, a Boeing 787-9 which had just reached cruise altitude after despatch with only one main ECS available began to lose cabin pressure. A precautionary descent and PAN was upgraded to a rapid descent and MAYDAY as cabin altitude rose above 10,000 feet. The Investigation found that aircraft release to service had not been preceded by a thorough enough validation of the likely reliability of the remaining ECS system. The inaudibility of the automated announcement accompanying the cabin oxygen mask drop and ongoing issues with the quality of CVR readout from 787 crash-protected recorders was also highlighted.)
  • B734, en-route, east northeast of Tanegashima Japan, 2015 (On 30 June 2015, both bleed air supplies on a Boeing 737-400 at FL370 failed in quick succession resulting in the loss of all pressurisation and, after making an emergency descent to 10,000 feet QNH, the flight was continued to the planned destination, Kansai. The Investigation found that both systems failed due to malfunctioning pre-cooler control valves and that these malfunctions were due to a previously identified risk of premature deterioration in service which had been addressed by an optional but “recommended” Service Bulletin which had not been taken up by the operator of the aircraft involved.)
  • A319, en-route, east of Dublin Ireland, 2008 (On 27 May 2008 an Airbus A319-100 being operated by Germanwings on a scheduled passenger flight from Dublin to Cologne was 30nm east of Dublin and passing FL100 in the climb in unrecorded daylight flight conditions when the Purser advised the flight crew by intercom that “something was wrong”, that almost all the passengers had fallen asleep, and that at least one of the cabin crew seated nearby was “unresponsive”. Following a review of this information and a check of the ECAM pressurisation page which showed no warnings or failures, a decision was taken to don oxygen masks and the aircraft returned uneventfully to Dublin without any further adverse effects on the 125 occupants. A MAYDAY was declared during the diversion.)
  • LJ35, Aberdeen SD USA, 1999 (On 25 October 1999, a Learjet 35, being operated on a passenger charter flight by Sunjet Aviation, crashed in South Dakota following loss of control attributed to crew incapacitation.)

... further results