If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Difference between revisions of "Air Turnback"

From SKYbrary Wiki

m (Integration.Manager moved page Work in progress:Air Turnback to Air Turnback without leaving a redirect)
 
(No difference)

Latest revision as of 10:02, 29 January 2021

Article Information
Category: General General
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

An air turnback is a situation where an aircraft returns to land at the departure aerodrome without having initially planned to do so.

The most common reason for air turnback is an emergency or abnormal situation during or shortly after take-off, the most common being engine failure. If the problem happens during acceleration, the crew might attempt to reject the take off depending on the speed and the nature of emergency. Sometimes a safer option is to get airborne and then make an approach and land. A probable complication in this case is that the aircraft's current weight may be greater than the certified maximum landing weight (MLW). If the crew opts for a turnback in this case, there are three options:

  • Make an overweight landing. The pilot in command has the right to deviate from prescribed procedures as required in an emergency situation in the interest of safety, i.e. they may choose to land even though the aircraft is heavier than the MLW if they consider this to be the safest course of action. The landing will be more challenging and require longer runway, thus increasing the chance of a runway excursion. Also, a special post-landing inspection will have to be carried out.
  • Burning the excess fuel, e.g. by entering a holding pattern. This is a safe option in many cases but if it is considered that by the time the weight is reduced below the MLW the aircraft will no longer be airworthy, or there is another urgent matter (e.g. a medical emergency) another course of action will be taken.
  • Dump fuel. This option is not available for most aircraft types and even if it is, the respective system may not have been installed on the particular aircraft. Additional restrictions may also apply, e.g. a minimum level to perform the operation or the need to reach a dedicated fuel dumping area.

Air turnback may happen during all phases of the flight, e.g. climb, cruise or even when the aircraft has reached the vicinity of the destination aerodrome (but is unable to land due to weather conditions). Any significant problem with the aircraft during the climb phase is likely to result in a turnback because of the closeness of the departure aerodrome. During the cruise, if an engine fails (or annother emergency situation arises, e.g. loss of cabin pressure), the flight crew will evaluate the situation and decide on the further course of action. Depending on the circumstances (severity of the situation, available fuel, company policy, weather, etc.), the choice may be to continue to the planned destination, to divert to the planned alternate, to land at the nearest suitable aerodrome or to return to the point of departure.

Accidents and Incidents

  • B752, en-route, Northern Ghana, 2009 (On 28 January 2009 the crew of a Boeing 757-200 continued takeoff from Accra Ghana despite becoming aware of an airspeed discrepancy during the take off roll. An attempt to resolve the problem failed and the consequences led to confusion as to what was happening which prompted them to declare a MAYDAY and return - successfully - to Accra. The left hand pitot probe was found to be blocked by an insect. The Investigation concluded that a low speed rejected takeoff would have been more appropriate than the continued take off in the circumstances which had prevailed.)
  • B743, vicinity Tehran Mehrabad Iran, 2015 (On 15 October 2015 a Boeing 747-300 experienced significant vibration from one of the engines almost immediately after take-off from Tehran Mehrabad. After the climb out was continued without reducing the affected engine thrust an uncontained failure followed 3 minutes later. The ejected debris caused the almost simultaneous failure of the No 4 engine, loss of multiple hydraulic systems and all the fuel from one wing tank. The Investigation attributed the vibration to the Operator's continued use of the engine without relevant Airworthiness Directive action and the subsequent failure to continued operation of the engine after its onset.)
  • B789, en-route, eastern Belgium, 2017 (On 29 April 2017, a Boeing 787-9 which had just reached cruise altitude after despatch with only one main ECS available began to lose cabin pressure. A precautionary descent and PAN was upgraded to a rapid descent and MAYDAY as cabin altitude rose above 10,000 feet. The Investigation found that aircraft release to service had not been preceded by a thorough enough validation of the likely reliability of the remaining ECS system. The inaudibility of the automated announcement accompanying the cabin oxygen mask drop and ongoing issues with the quality of CVR readout from 787 crash-protected recorders was also highlighted.)
  • L410, Isle of Man, 2017 (On 23 February 2017, a Czech-operated Let-410 departed from Isle of Man into deteriorating weather conditions and when unable to land at its destination returned and landed with a crosswind component approximately twice the certified limit. The local Regulatory Agency instructed ATC to order the aircraft to immediately stop rather than attempt to taxi and the carrier’s permit to operate between the Isle of Man and the UK was subsequently withdrawn. The Investigation concluded that the context for the event was a long history of inadequate operational safety standards associated with its remote provision of flights for a Ticket Seller.)
  • A319, London Heathrow UK, 2013 (On 24 May 2013 the fan cowl doors on both engines of an Airbus A319 detached as it took off from London Heathrow. Their un-latched status after a routine maintenance input had gone undetected. Extensive structural and system damage resulted and a fire which could not be extinguished until the aircraft was back on the ground began in one engine. Many previously-recorded cases of fan cowl door loss were noted but none involving such significant collateral damage. Safety Recommendations were made on aircraft type certification in general, A320-family aircraft modification, maintenance fatigue risk management and aircrew procedures and training.)
  • B738, vicinity Paris Orly France, 2018 (On 7 February 2018, a Boeing 737-800 experienced an airspeed mismatch during takeoff on a post maintenance positioning flight but having identified the faulty system by reference to the standby instrumentation, the intended flight was completed without further event. After the recorded defect was then signed off as “no fault found” after a failure to follow the applicable fault-finding procedure, the same happened on the next (revenue) flight but with an air turnback made. The Investigation found that the faulty sensor had been fitted at build three earlier with a contaminated component which had slowly caused sensor malfunction to develop.)

Load more

Related Articles

Further Reading