If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Taxiway Collisions

From SKYbrary Wiki

Article Information
Category: Ground Operations Ground Operations
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

An airport is a complex interface between the air and the ground environments, where access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.

This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article On-Gate Collisions provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.

Occurrences

As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:

  • using an incorrect taxiway
  • failing to stop at a taxiway holding point
  • failing to stay on the surface movement control radio frequency or ground frequency as appropriate
  • failing to obtain a clearance before entering an area subject to control.

In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:

  • lead to collision
  • require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties


Most of the remaining occurrences are related to one of the following:

  • aircraft-aircraft collisions or near collisions - collisions can result from:
    • failure to follow taxiway centreline guidance
    • failure to stop prior to a stopbar
    • taxiing at speeds unsuited to the conditions or level of congestion
    • taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
    • taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
  • reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
    • inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
    • failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
  • jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as Unit Load Devices (ULD) to move and strike other aircraft, equipment or personnel

Prevention

Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:

  • Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
    • ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
    • maintain situational awareness
    • operate their vehicle safely and in accordance with all company and airport rules
    • obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
    • yield to aircraft at all times
    • obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
  • Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
    • know the size of the aircraft in tow inclusive of the wingspan
    • be conversant with the normal taxi routes from one airfield location to another
    • understand the stopping distances required for a tug with an aircraft in tow
    • comply with all clearances, especially runway crossing clearances
    • use wing and tail walkers when manoeuvring in congested areas
  • Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
    • provide the appropriate clearance for the requested action
    • ensure that the clearance readback is accurate
    • to the extent possible, monitor the movement visually, via transponder or by use of multilateration equipment to ensure clearance compliance
  • Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
    • request, readback and comply with an appropriate clearance
    • maintain situational awareness
    • taxi at a speed appropriate to the conditions and traffic situation
    • maintain the centre of the taxi lane
    • be vigilant for taxi lane compromise by another aircraft, vehicle or object
    • not assume that vehicles will yield right-of-way

Accidents and Incidents

The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.

Aircraft/Aircraft Conflict

  • B752 / CRJ7, San Francisco CA USA, 2008 (On 13 January 2008, a Boeing 757-200 and a Bombardier CL-600 received pushback clearance from two adjacent terminal gates within 41 seconds. The ground controller believed there was room for both aircraft to pushback. During the procedure both aircraft were damaged as their tails collided. The pushback procedure of the Boeing was performed without wing-walkers or tail-walkers.)
  • B738/A321, Prague Czech Republic, 2010 (On 18 June 2010 a Sun Express Boeing 737-800 taxiing for a full length daylight departure from runway 06 at Prague was in collision with an Airbus 321 which was waiting on a link taxiway leading to an intermediate take off position on the same runway. The aircraft sustained damage to their right winglet and left horizontal stabiliser respectively and both needed subsequent repair before being released to service.)
  • A332/A345, Khartoum Sudan, 2010 (On 30 September 2010, an A330-200 was about to take off from Khartoum at night in accordance with its clearance when signalling from a hand-held flashlight and a radio call from another aircraft led to this not taking place. The other (on-stand) aircraft crew had found that they had been hit by the A330 as it had taxied past en route to the runway. The Investigation found that although there was local awareness that taxiway use and the provision of surface markings at Khartoum did not ensure safe clearance between aircraft, this was not being communicated by NOTAM or ATIS.)
  • B744 / A321, London Heathrow UK, 2004 (On 23 March 2004, an out of service British Airways Boeing 747-400, under tow passed behind a stationary Airbus A321-200 being operated by Irish Airline Aer Lingus on a departing scheduled passenger service in good daylight visibility and the wing tip of the 747 impacted and seriously damaged the rudder of the A321. The aircraft under tow was cleared for the towing movement and the A321 was holding position in accordance with clearance. The towing team were not aware of the collision and initially, there was some doubt in the A321 flight deck about the cause of a ‘shudder’ felt when the impact occurred but the cabin crew of the A321 had felt the impact shudder and upon noticing the nose of the 747 appearing concluded that it had struck their aircraft. Then the First Officer saw the damaged wing tip of the 747 and informed ATC about the possible impact. Later another aircraft, positioned behind the A321, confirmed the rudder damage. At the time of the collision, the two aircraft involved were on different ATC frequencies.)
  • B738 / B738, Dublin Ireland, 2014 (On 7 October 2014, a locally-based Boeing 737-800 taxiing for departure from runway 34 at Dublin as cleared in normal night visibility collided with another 737-800 stationary in a queue awaiting departure from runway 28. Whilst accepting that pilots have sole responsible for collision avoidance, the Investigation found that relevant restrictions on taxi clearances were being routinely ignored by ATC. It also noted that visual judgement of wingtip clearance beyond 10 metres was problematic and that a subsequent very similar event at Dublin involving two 737-800s of the same Operator was the subject of a separate investigation.)
  • B744 / B763, Melbourne Australia, 2006 (On 2 February 2006, a Boeing 747-400 was taxiing for a departure at Melbourne Airport. At the same time, a Boeing 767-300 was stationary on taxiway Echo and waiting in line to depart from runway 16. The left wing tip of the Boeing 747 collided with the right horizontal stabiliser of the Boeing 767 as the first aircraft passed behind. Both aircraft were on scheduled passenger services from Melbourne to Sydney. No one was injured during the incident.)
  • MD82 / C441, Lambert-St Louis MI USA, 1994 (On 22 November 1994 a McDonnell Douglas MD 82 flight crew taking off from Lambert- St. Louis at night in excellent visibility suddenly became aware of a stationary Cessna 441 on the runway ahead and was unable to avoid a high speed collision. The collision destroyed the Cessna but allowed the MD82 to be brought to a controlled stop without occupant injury. The Investigation found that the Cessna 441 pilot had mistakenly believed his departure would be from the runway he had recently landed on and had entered that runway without clearance whilst still on GND frequency.)
  • B738/B738, Girona Spain, 2010 (On 14 January 2010, two Ryanair Boeing 737-800 aircraft were operating scheduled passenger flights from Girona to Las Palmas and Turin respectively and had taxied from adjacent gates at Girona in normal day visibility in quick succession. The Turin-bound aircraft taxied first but because it was early at the holding point for its CTOT, the other aircraft was designated first for take off and during the overtaking manoeuvre in the holding area, the wing tip of the moving Las Palmas aircraft hit the horizontal stabiliser of the Turin bound aircraft causing minor and substantial damage to the respective aircraft. None of the respective 81 and 77 occupants were injured and both aircraft taxied back to their gates.)

Aircraft/Vehicle Conflict

  • A320, London Heathrow UK, 2006 (On 26 June 2006, after an uneventful pre-flight pushback of a British Airways Airbus A320-200 at London Heathrow Airport, the aircraft started moving under its own power and, shortly afterwards, collided with the tractor that had just performed the pushback, damaging both the right engine and the tractor.)
  • Vehicle / PA31, Mackay SE Australia, 2008 (On 29 June 2012, a Piper PA31 taking off from runway 05 on a passenger charter flight just missed hitting an inspection vehicle which had entered the take off runway from an intersecting one contrary to ATC clearance. The overflying aircraft was estimated to have cleared the vehicle by approximately 20 feet and the pilot was unaware it had entered the active runway. The driver had been taking a mobile telephone call at the time and attributed the incursion to distraction. The breached clearance had been given and correctly read back approximately two minutes prior to the conflict occurring.)
  • B763, Luton UK, 2005 (On 16 February 2005, at Luton Airport, a Boeing B767-300 collided with the tug pulling it forward when the shear pin of the unserviceable tow bar being used to pull the aircraft broke. The aircraft ran onto the tug when the ground crew stopped the tug suddenly. As result of the collision with the tug the aircraft fuselage and landing gear was damaged.)
  • A343, Frankfurt Germany, 2008 (On 21 August 2008, an Airbus A340-300 being operated by an undisclosed operator by a German-licensed flight crew on a scheduled passenger flight from Teheran to Frankfurt collided with a stationary bus with only the driver on board whilst approaching the allocated parking gate in normal daylight visibility. The No 4 engine impacted the bus roof as shown in the photograph below reproduced from the official report. None of the occupants of either the aircraft or the bus were injured.)
  • Vehicle / B752, Dublin Ireland, 2009 (On 29 May 2009, a Boeing 757-200 being operated by UK Airline Thomson Airways on a passenger charter flight from Sharm-el-Sheikh, Egypt to Dublin and having just landed on runway 10 at destination at night in poor visibility overtook a small ride-on grass mower moving along the right hand side of the runway in approximate line with the aircraft’s right hand wing tip. The driver of the mower was unaware of the arriving aircraft until he heard it on the runway behind him. Prior to the landing, ATC had been informed that all grass-cutting equipment previously working on and around the runway had cleared it.)
  • B738, London Stansted UK, 2008 (On 13 November 2008, a Boeing 737-800 with an unserviceable APU was being operated by Ryanair on a passenger flight at night was in collision with a tug after a cross-bleed engine start procedure was initiated prior to the completion of a complex aircraft pushback in rain. As the power was increased on the No 1 engine in preparation for the No 2 engine start, the resulting increase in thrust was greater than the counter-force provided by the tug and the aircraft started to move forwards. The towbar attachment failed and subsequently the aircraft’s No 1 engine impacted the side of the tug, prior to the aircraft brakes being applied.)
  • B744, Paris CDG France, 2003 (On 18 January 2003, a Boeing 747-400F being operated by Singapore Airlines Cargo on a scheduled cargo flight from Paris CDG to Dubai taxied for departure in darkness and fog with visibility less than 100 metres in places and the right wing was in collision with a stationary and unoccupied ground de/anti icing vehicle without the awareness of either the flight crew or anybody else at the time. Significant damage occurred to the de icing vehicle and the aircraft was slightly damaged. The vehicle damage was not discovered until almost two hours later and the aircraft involved was not identified until it arrived in Dubai where the damage was observed and the authorities at Paris CDG advised.)
  • Vehicle / E190 / E121, Jersey Channel Islands, 2010 (On 1 June 2010, an Airport RFFS bird scaring vehicle entered the active runway at Jersey in LVP without clearance and remained there for approximately three minutes until ATC became aware. The subsequent Investigation found that the incursion had fortuitously occurred just after an ERJ 190 had landed and had been terminated just as another aircraft had commenced a go around after failure to acquire the prescribed visual reference required to continue to a landing. The context for the failure of the vehicle driver to follow existing procedures was found to be their inadequacy and appropriate changes were implemented.)

Aircraft/Object Conflict

  • A319, London Heathrow UK, 2007 (On 12 February 2007, an Airbus A319-100 being operated by British Airways on a scheduled passenger flight into London Heathrow made unintended contact in normal daylight visibility with the stationary airbridge at the arrival gate. This followed an emergency stop made after seeing hand signals from ground staff whilst following SEGS indications which appeared to suggest that there was a further 5 metres to run to the correct parking position. There was no damage to the aircraft, only minimal damage to the airbridge and there were no injuries to the aircraft occupants or any other person)
  • B738, Djalaluddin Indonesia, 2013 (On 6 August 2013, a Boeing 737-800 encountered cows ahead on the runway after landing normally in daylight following an uneventful approach and was unable to avoid colliding with them at high speed and as a result departed the runway to the left. Parts of the airport perimeter fencing were found to have been either missing or inadequately maintained for a significant period prior to the accident despite the existence of an airport bird and animal hazard management plan. Corrective action was taken following the accident.)
  • A319, Ibiza Spain, 2016 (On 19 June 2016, an Airbus A320 failed to follow the clearly-specified and ground-marked self-positioning exit from a regularly used gate at Ibiza and its right wing tip collided with the airbridge, damaging both it and the aircraft. The Investigation found that the crew had attempted the necessary left turn using the Operator’s ‘One Engine Taxi Departure’ procedure using the left engine but then failed to follow the marked taxi guideline by a significant margin. It was noted that there had been no other such difficulties with the same departure in the previous four years it had been in use.)
  • A321, Daegu South Korea, 2006 (On 21 February 2006, an Airbus A321-200 being operated by China Eastern on a scheduled passenger flight from Daegu to Shanghai Pudong failed to follow the marked taxiway centreline when taxiing for departure in normal daylight visibility and a wing tip impacted an adjacent building causing minor damage to both building and aircraft. None of the 166 occupants were injured.)
  • A346, Toulouse France, 2007 (During ground running of engines, the aircraft impacted a concrete wall at a ground speed of 30 kts following unintended movement and the aircraft was wrecked.)
  • B738, Surat India, 2014 (On 6 November 2014, a Boeing 737-800 taking off at night from Surat hit an object as it was approaching 80 knots and the take-off was immediately rejected. On return to the gate substantial damage was found to the left engine and a runway inspection found one dead buffalo and another live one. The runway was reopened after removal of the carcass but the live buffalo was not removed and was seen again by the runway the following day. The Investigation found a history of inadequate perimeter fencing and inadequate runway inspection practices at the airport.)
  • B772, Singapore, 2013 (On 19 December 2013, the left engine of a Boeing 777-200 taxiing onto its assigned parking gate after arrival at Singapore ingested an empty cargo container resulting in damage to the engine which was serious enough to require its subsequent removal and replacement. The Investigation found that the aircraft docking guidance system had been in use despite the presence of the ingested container and other obstructions within the clearly marked 'equipment restraint area' of the gate involved. The corresponding ground handling procedures were found to be deficient as were those for ensuring general ramp awareness of a 'live' gate.)
  • DH8D, Hubli India, 2015 (On 8 March 2015, directional control of a Bombardier DHC 8-400 which had just completed a normal approach and landing was lost and the aircraft departed the side of the runway following the collapse of both the left main and nose landing gear assemblies. The Investigation found that after being allowed to drift to the side of the runway without corrective action, the previously airworthy aircraft had hit a non-frangible edge light and the left main gear and then the nose landing gear had collapsed with a complete loss of directional control. The aircraft had then exited the side of the runway sustaining further damage.)

Related Articles

Further Reading