If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Taxiway Collisions

From SKYbrary Wiki

Article Information
Category: Ground Operations Ground Operations
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

An airport is a complex interface between the air and the ground environments, where access must be controlled and separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs.

This article examines collisions and near collisions whilst aircraft are on the airport manoeuvring areas inclusive of taxiways and ramp areas. The article On-Gate Collisions provides insight into aircraft collisions occurring whilst on, entering or leaving an assigned gate.

Occurrences

As previously stated, to ensure efficient and safe airport ground operations, separation between aircraft or between aircraft and vehicular traffic must be maintained and optimised. On occasion, however, minimum separation, particularly aircraft/vehicle separation is compromised. Whilst all events do not result in collision with an aircraft, the majority of taxiway occurrences involve vehicle operators deviating from a surface movement controller clearance. These "failure to comply" occurrences most usually involve vehicles:

  • using an incorrect taxiway
  • failing to stop at a taxiway holding point
  • failing to stay on the surface movement control radio frequency or ground frequency as appropriate
  • failing to obtain a clearance before entering an area subject to control.

In all cases, these actions have the potential to put the vehicle in conflict with an aircraft which, in turn, could:

  • lead to collision
  • require aggressive braking by the aircraft which could result in personnel injuries. Cabin crew are especially vulnerable as they might be moving within the cabin preforming pre-departure or post-landing duties


Most of the remaining occurrences are related to one of the following:

  • aircraft-aircraft collisions or near collisions - collisions can result from:
    • failure to follow taxiway centreline guidance
    • failure to stop prior to a stopbar
    • taxiing at speeds unsuited to the conditions or level of congestion
    • taxiway deviation whilst trying to manoeuvre to "squeeze" past another aircraft. Manoeuvring around an aircraft partially blocking a taxiway (as might be the case if the aircraft was approaching, but not yet at the stop point of, a gate) can lead to collision. If misjudged, this could result in a wingtip striking the tail of the stopped aircraft or it could compromise clearance between obstacles or other aircraft and the wingtip opposite the stopped aircraft
    • taxiway configuration - converging taxiways can potentially lead to reduced or compromised clearance, especially where they cross
  • reduced aircraft clearance with ground equipment or obstacles. Reduced clearance accidents or incidents can occur in various ways. These include:
    • inappropriate use of a restricted taxiway - some taxiways are restricted by wingspan. Use by a larger aircraft could compromise obstacle clearance
    • failure to follow taxi lane guidance - deviation from the lane guidance whilst manoeuvring in proximity to light stands, gates or stationary equipment can result in collision
  • jet blast -inappropriate thrust settings or following too closely can result in aircraft damage due to jet blast. Jet blast can also cause unsecured equipment such as Unit Load Devices (ULD) to move and strike other aircraft, equipment or personnel

Prevention

Most taxiway accidents and incidents are preventable. This prevention is dependant upon appropriate training and testing, compliance with clearances, published procedures and right-of-way rules, maintaining situational awareness and adapting speed of movement to suit the weather and surface conditions. Some specific accident prevention strategies are as follows:

  • Vehicle operators - It is imperative that vehicle operators be properly trained, tested and authorised for ramp and taxiway operations. Driving infractions should be investigated and additional training provided where appropriate. Multiple infractions should be considered grounds for suspension of airside driving privileges. Operators should:
    • ensure daily inspection for their vehicle is complete and that beacon/hazard lights are operating when the vehicle is airside
    • maintain situational awareness
    • operate their vehicle safely and in accordance with all company and airport rules
    • obey all "rules of the road" inclusive of speed limits, stop signs and right-of-way guidance
    • yield to aircraft at all times
    • obtain and read back any ground movement controller clearance prior to entering an area where clearance is required. If clearance is not understood, ASK!
  • Tug operators - Tug operators have the additional responsibility of moving aircraft on and off gates as well as positioning aircraft from one location on the airfield to another. In addition to the aforementioned items for vehicle operators, the tug operator must:
    • know the size of the aircraft in tow inclusive of the wingspan
    • be conversant with the normal taxi routes from one airfield location to another
    • understand the stopping distances required for a tug with an aircraft in tow
    • comply with all clearances, especially runway crossing clearances
    • use wing and tail walkers when manoeuvring in congested areas
  • Controllers - The ground controller is responsible for the safe and efficient movement of aircraft and vehicle traffic on the taxiways and aprons. They should:
    • provide the appropriate clearance for the requested action
    • ensure that the clearance readback is accurate
    • to the extent possible, monitor the movement visually, via transponder or by use of multilateration equipment to ensure clearance compliance
  • Pilots - In general, pilots are responsible for the ground movement of an aircraft from the runway to the gate and from the gate to the runway although they may also reposition aircraft from one point on the airfield to another. In all cases they should:
    • request, readback and comply with an appropriate clearance
    • maintain situational awareness
    • taxi at a speed appropriate to the conditions and traffic situation
    • maintain the centre of the taxi lane
    • be vigilant for taxi lane compromise by another aircraft, vehicle or object
    • not assume that vehicles will yield right-of-way

Accidents and Incidents

The following accidents and incidents involve collision or near collision between two aircraft, an aircraft and a vehicle, or an aircraft and a stationary object.

Aircraft/Aircraft Conflict

  • B744 / A321, London Heathrow UK, 2004 (On 23 March 2004, an out of service British Airways Boeing 747-400, under tow passed behind a stationary Airbus A321-200 being operated by Irish Airline Aer Lingus on a departing scheduled passenger service in good daylight visibility and the wing tip of the 747 impacted and seriously damaged the rudder of the A321. The aircraft under tow was cleared for the towing movement and the A321 was holding position in accordance with clearance. The towing team were not aware of the collision and initially, there was some doubt in the A321 flight deck about the cause of a ‘shudder’ felt when the impact occurred but the cabin crew of the A321 had felt the impact shudder and upon noticing the nose of the 747 appearing concluded that it had struck their aircraft. Then the First Officer saw the damaged wing tip of the 747 and informed ATC about the possible impact. Later another aircraft, positioned behind the A321, confirmed the rudder damage. At the time of the collision, the two aircraft involved were on different ATC frequencies.)
  • DH8C / GALX, Valencia Spain, 2008 (On 11 February 2008, the crew of a DHC8-300 misjudged the sufficient clearance during taxi and collided with a Gulfstream G200 at a taxiway intersection.)
  • DH8C / P180, Ottawa ON Canada, 2013 (On 1 December 2013, a small aircraft taxing for departure at night was cleared to cross an active runway and did so as a DHC8 was taking off from the same runway. Separation was significant and there was no actual risk of collision. The Investigation found that the GND controller had issued clearance to the taxiing aircraft when he had responsibility for its whole taxi route but had neither updated the aircraft status system nor directly advised of the taxiing aircraft when passing responsibility for part of its cleared route to the TWR controller who therefore remained unaware of it.)
  • B763 / A320, Delhi India, 2017 (On 8 August 2017, a Boeing 767-300 departing Delhi was pushed back into a stationary and out of service Airbus A320 on the adjacent gate rendering both aircraft unfit for flight. The Investigation found that the A320 had been instructed to park on a stand that was supposed to be blocked, a procedural requirement if the adjacent stand is to be used by a wide body aircraft and although this error had been detected by the stand allocation system, the alert was not noticed, in part due to inappropriate configuration. It was also found that the pushback was commenced without wing walkers.)
  • CRJ7 / CRJ2, Charlotte NC USA, 2008 (On 28 June 2008, a Bombardier CRJ 700 operated by PSA Airlines, during daytime pushback collided with a stationary CRJ 200 of the same company at Douglas International Airport Charlotte, North Carolina.)
  • RJ85 / RJ1H, London City Airport, London UK, 2008 (On 21 April 2008, an Avro RJ85 aircraft was parked on Stand 10 at London City Airport, with an Avro RJ100 parked to its left, on the adjacent Stand 11. After being repositioned by a tug, the RJ85 taxied forward and to the right, its tail contacting the tail of the RJ100 and causing minor damage to the RJ100’s right elevator.)
  • FA7X, London City UK, 2016 (On 24 November 2016, a Dassault Falcon 7X being marshalled into an unmarked parking position after arriving at London City Airport was inadvertently directed into a collision with another crewed but stationary aircraft which sustained significant damage. The Investigation found that the apron involved had been congested and that the aircraft was being marshalled in accordance with airport procedures with wing walker assistance but a sharp corrective turn which created a 'wing growth' effect created a collision risk that was signalled at the last minute and incorrectly so by the wing walker involved and was also not seen by the marshaller.)
  • B733 / DH8D, Fort McMurray Canada, 2014 (On 4 August 2014, a Boeing 737-300 making a day visual approach at Fort McMurray after receiving an ILS/DME clearance lined up on a recently-constructed parallel taxiway and its crew were only alerted to their error shortly before touchdown by the crew of a DHC8-400 which was taxiing along the same taxiway in the opposite direction. This resulted in a go around being commenced from 46 feet agl. The Investigation noted that both pilots had been looking out during the final stages of the approach and had ignored important SOPs including that for a mandatory go around from an unstable approach.)

Aircraft/Vehicle Conflict

  • A343, Frankfurt Germany, 2008 (On 21 August 2008, an Airbus A340-300 being operated by an undisclosed operator by a German-licensed flight crew on a scheduled passenger flight from Teheran to Frankfurt collided with a stationary bus with only the driver on board whilst approaching the allocated parking gate in normal daylight visibility. The No 4 engine impacted the bus roof as shown in the photograph below reproduced from the official report. None of the occupants of either the aircraft or the bus were injured.)
  • Vehicle / B752, Dublin Ireland, 2009 (On 29 May 2009, a Boeing 757-200 being operated by UK Airline Thomson Airways on a passenger charter flight from Sharm-el-Sheikh, Egypt to Dublin and having just landed on runway 10 at destination at night in poor visibility overtook a small ride-on grass mower moving along the right hand side of the runway in approximate line with the aircraft’s right hand wing tip. The driver of the mower was unaware of the arriving aircraft until he heard it on the runway behind him. Prior to the landing, ATC had been informed that all grass-cutting equipment previously working on and around the runway had cleared it.)
  • B737, Gran Canaria Spain, 2016 (On 7 January 2016, a Boeing 737-700 was inadvertently cleared by ATC to take off on a closed runway. The take-off was commenced with a vehicle visible ahead at the runway edge. When ATC realised the situation, a 'stop' instruction was issued and the aircraft did so after travelling approximately 740 metres. Investigation attributed the controller error to "lost situational awareness". It also noted prior pilot and controller awareness that the runway used was closed and that the pilots had, on the basis of the take-off clearance crossed a lit red stop bar to enter the runway without explicit permission.)
  • B738, London Stansted UK, 2008 (On 13 November 2008, a Boeing 737-800 with an unserviceable APU was being operated by Ryanair on a passenger flight at night was in collision with a tug after a cross-bleed engine start procedure was initiated prior to the completion of a complex aircraft pushback in rain. As the power was increased on the No 1 engine in preparation for the No 2 engine start, the resulting increase in thrust was greater than the counter-force provided by the tug and the aircraft started to move forwards. The towbar attachment failed and subsequently the aircraft’s No 1 engine impacted the side of the tug, prior to the aircraft brakes being applied.)
  • A320, Dublin Ireland, 2017 (On 27 September 2017, an Airbus A320 being manoeuvred off the departure gate at Dublin by tug was being pulled forward when the tow bar shear pin broke and the tug driver lost control. The tug then collided with the right engine causing significant damage. The tug driver and assisting ground crew were not injured. The Investigation concluded that although the shear pin failure was not attributable to any particular cause, the relative severity of the outcome was probably increased by the wet surface, a forward slope on the ramp and fact that an engine start was in progress.)
  • SB20, Stockholm Arlanda, 2001 (On 18 December 2001, a Saab 2000 being operated by Air Botnia on scheduled passenger flight from Stockholm to Oulu was taxiing out at night in normal visibility in accordance with its ATC clearance when a car appeared from the left on a roadway and drove at speed on a collision course with the aircraft. In order to avoid a collision, the aircraft had to brake sharply and the aircraft commander saw the car pass under the nose of the aircraft and judged the vehicle’s closest distance to the aircraft to be four to five metres. The car did not stop, could not subsequently be identified and no report was made by the driver or other witnesses. The diagram below taken from the official report shows the site of the conflict - the aircraft was emerging from Ramp ‘G’ to turn left on taxiway ‘Z’ and the broken line shows the roadway which is crossed just before the left turn is commenced.)
  • B742, Stockholm Arlanda Sweden, 2007 (On 25 June 2007, a Boeing 747-200F being operated by Cathay Pacific on a scheduled cargo flight from Stockholm to Dubai had completed push back for departure in normal daylight visibility and the parking brakes had been set. The tow vehicle crew had disconnected the tow bar but before they and their vehicle had cleared the vicinity of the aircraft, it began to taxi and collided with the vehicle. The flight crew were unaware of this and continued taxiing for about 150 metres until the flight engineer noticed that the indications from one if the engines were abnormal and the aircraft was taxied back to the gate. The tow vehicle crew and the dispatcher had been able to run clear and were not injured physically injured although all three were identified as suffering minor injury (shock). The aircraft was “substantially damaged” and the tow vehicle was “damaged”.)
  • E190 / Vehicle, Paris CDG France, 2014 (On 19 April 2014, an Embraer 190 collided with the tug which was attempting to begin a pull forward after departure pushback which, exceptionally for the terminal concerned, was prohibited for the gate involved. As a result, severe damage was caused to the lower fuselage. The Investigation found that the relevant instructions were properly documented but ignored when apron services requested a 'push-pull' to minimise departure delay for an adjacent aircraft. Previous similar events had occurred on the same gate and it was suspected that a lack of appreciation of the reasons why the manoeuvre used was prohibited may have been relevant.)

Aircraft/Object Conflict

  • A319, Ibiza Spain, 2016 (On 19 June 2016, an Airbus A320 failed to follow the clearly-specified and ground-marked self-positioning exit from a regularly used gate at Ibiza and its right wing tip collided with the airbridge, damaging both it and the aircraft. The Investigation found that the crew had attempted the necessary left turn using the Operator’s ‘One Engine Taxi Departure’ procedure using the left engine but then failed to follow the marked taxi guideline by a significant margin. It was noted that there had been no other such difficulties with the same departure in the previous four years it had been in use.)
  • B74S, Stockholm Arlanda Sweden, 2006 (On 11 December 2006, a Boeing 747SP being operated by Syrian Air on a scheduled passenger flight from Damascus to Stockholm was arriving on the designated parking gate at destination in normal visibility at night when it collided with the airbridge. None of the 116 occupants of the aircraft suffered any injury but the aircraft was “substantially damaged” and the airbridge was “damaged”.)
  • A320, Lisbon Portugal, 2015 (On 19 May 2015, an Airbus A319 crew attempted to taxi into a nose-in parking position at Lisbon despite the fact that the APIS, although switched on, was clearly malfunctioning whilst not displaying an unequivocal ‘STOP’. The aircraft continued 6 metres past the applicable apron ground marking by which time it had hit the airbridge. The marshaller in attendance to oversee the arrival did not signal the aircraft or manually select the APIS ‘STOP’ instruction. The APIS had failed to detect the dark-liveried aircraft and the non-display of a steady ‘STOP’ indication was independently attributed to a pre-existing system fault.)
  • B738, Surat India, 2014 (On 6 November 2014, a Boeing 737-800 taking off at night from Surat hit an object as it was approaching 80 knots and the take-off was immediately rejected. On return to the gate substantial damage was found to the left engine and a runway inspection found one dead buffalo and another live one. The runway was reopened after removal of the carcass but the live buffalo was not removed and was seen again by the runway the following day. The Investigation found a history of inadequate perimeter fencing and inadequate runway inspection practices at the airport.)
  • B744, Johannesburg South Africa, 2013 (On 22 December 2013, a Boeing 747-400 taxiing for departure at Johannesburg at night with an augmented crew failed to follow its correctly-acknowledged taxi clearance and one wing hit a building resulting in substantial damage to both aircraft and building and a significant fuel leak. The aircraft occupants were all uninjured but four people in the building sustained minor injuries. The accident was attributed to crew error both in respect of an inadequate briefing and failure to monitor aircraft position using available charts and visual reference. Some minor contributory factors relating to the provision of airport lighting and signage were noted.)
  • B773, Abu Dhabi UAE, 2016 (On 27 September 2016, the left engine of a Boeing 777-300 failed on takeoff from Abu Dhabi after it ingested debris resulting from tread separation from one of the nose landing gear tyres and a successful overweight return to land then followed. The Investigation found that FOD damage rather than any fault with the manufacture or re-treading of the tyre had initiated tread separation and also noted the absence of any assessment of the risk of engine damage and failure from such debris ingestion which it was noted had the potential to have affected both engines rather than just one.)
  • B737, Amsterdam Netherlands, 2003 (n 22 December 2003, a Boeing 737-700 being operated by UK Operator Easyjet on a scheduled passenger flight from Amsterdam to London Gatwick was taxiing for departure at night in normal visibility and took a different route to that instructed by ATC. The alternative route was, unknown to the flight crew, covered with ice and as a consequence, an attempt to maintain directional control during a turn was unsuccessful and the aircraft left wing collided with a lamp-post. The collision seriously damaged the aircraft and the lamp post. One passenger sustained slight injuries because of the impact. The diagram below taken from the official investigation report shows the area where the collision occurred.)
  • B722, Cotonou Benin, 2003 (On 25 December 2003, a Boeing 727-200 being operated by UTA (Guinea) on a scheduled passenger flight from Cotonou to Beirut with a planned stopover at Kufra, Libya, failed to get properly airborne in day VMC from the 2400 metre departure runway and hit a small building 2.45 metres high situated on the extended centreline 118 metres beyond the end of the runway. The right main landing gear broke off and ripped off a part of the trailing edge flaps on the right wing. The airplane then banked slightly to the right and crashed onto the beach where it broke into several pieces and ended up in the sea where the depth of water varied between three and ten metres. Of the estimated 163 occupants, 141 were killed and the remainder seriously injured.)

Related Articles

Further Reading