If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

 Actions

Aircraft Bleed Air Systems

From SKYbrary Wiki

Article Information
Category: Flight Technical Flight Technical
Content source: SKYbrary About SKYbrary
Content control: SKYbrary About SKYbrary

Description

The design of most turbojet and turboprop powered aircraft incorporates a bleed air system. A bleed air system uses a network of ducts, valves and regulators to conduct medium to high pressure air, "bled" from the compressor section of the engine(s) and APU, to various locations within the aircraft. There it is utilized for a number of functions inclusive of:

Bleed Air Extraction

Bleed air is extracted from the compressor of the engine or APU. The specific stage of the compressor from which the air is bled varies by engine type. In some engines, air may be taken from more than one location for different uses as the temperature and pressure of the air is variable dependant upon the compressor stage at which it is extracted. Bleed air typically has a temperature of 200 – 250 degrees C. and a pressure of approximately 40 PSI exiting the engine pylon.

Air Conditioning

Bleed air is routed to the air conditioning packs where it is filtered and then cooled using an expansion process. The temperature of the air is regulated using uncooled bleed air and the humidity of the mixture is adjusted prior to introducing the air into the aircraft cabin. Temperature controllers in the flight deck and cabin allow adjustment of the target temperature and thermostats provide feedback to the packs to demand an increase or decrease in the output temperature.

Engine Start

Bleed air, extracted from either the Auxiliary Power Unit (APU) or another operating engine is used to power an air turbine starter motor to start the engine. The primary advantage of an air turbine starter is that a given amount of torque can be produced by a smaller and lighter unit than would be the case if it was electrically or hydraulically powered.

Water System / Hydraulic Reservoir Pressurisation

Bleed air is often utilized to pressurise the potable water holding tank eliminating the requirement for a pump to feed the water to the galleys and lavatories. Similarly, bleed air is used to pressurise the hydraulic system reservoirs of many aircraft reducing the likelihood of pump cavitation and the resulting loss of system pressure.

Boundary Layer Enhancement (Blown Flaps)

Although its current use is very limited, bleed air has been used in the past, mainly in military applications, to enhance boundary layer energy. In a conventional blown flap, a small amount of bleed air is piped to channels running along the rear of the wing. There, it is forced through slots in the wing flaps of the aircraft when the flaps reach certain angles. Injecting high energy air into the boundary layer produces an increase in the stalling angle of attack and the maximum lift coefficient by delaying boundary layer separation from the airfoil.

Threats

The major threat associated with a bleed air system is the potential risk of a leak resulting from loss of system integrity. A bleed air leak can lead to loss of system function, overheat or even fire. This topic is covered in detail in the article entitled Bleed Air Leaks.

Design Developments

Aircraft design has featured bleed air systems for a number of decades. However, with the introduction of the B787, Boeing has incorporated a new no-bleed systems architecture that eliminates the traditional pneumatic system and bleed manifold. Most functions formerly powered by bleed air such as the air-conditioning packs and wing anti-ice systems are now electrically powered. According to Boeing, the no-bleed systems architecture offers operators a number of benefits, including:

  • Improved fuel consumption due to a more efficient secondary power extraction, transfer, and usage.
  • Reduced maintenance costs due to elimination of the maintenance-intensive bleed system.
  • Improved reliability due to the use of modern power electronics and fewer components in the engine installation.
  • Expanded range and reduced fuel consumption due to lower overall weight.

Accident & Incidents

Events held on the SKYbrary A&I database which include reference to the bleed air system include:

  • B737 en-route, Glen Innes NSW Australia, 2007 (On 17 November 2007 a Boeing 737-700 made an emergency descent after the air conditioning and pressurisation system failed in the climb out of Coolangatta at FL318 due to loss of all bleed air. A diversion to Brisbane followed. The Investigation found that the first bleed supply had failed at low speed on take off but that continued take off had been continued contrary to SOP. It was also found that the actions taken by the crew in response to the fault after completing the take off had also been also contrary to those prescribed.)
  • E195, Exeter UK, 2019 (On 28 February 2019, an Airbus A320 abandoned takeoff from Exeter when fight deck fumes/smoke accompanied thrust applied against the brakes. When informed of similar conditions in the cabin, the Captain ordered an emergency evacuation. Some passengers using the overwing exits re-entered the cabin after becoming confused as to how to leave the wing. The Investigation attributed the fumes to an incorrectly-performed engine compressor wash arising in a context of poorly-managed maintenance and concluded that guidance on overwing exit use had been inadequate and that the 1.8 metre certification height limit for exits without evacuation slides should be reduced.)
  • A320, en-route, north of Öland Sweden, 2011 (On 5 March 2011, a Finnair Airbus A320 was westbound in the cruise in southern Swedish airspace after despatch with Engine 1 bleed air system inoperative when the Engine 2 bleed air system failed and an emergency descent was necessary. The Investigation found that the Engine 2 system had shut down due to overheating and that access to proactive and reactive procedures related to operations with only a single bleed air system available were deficient. The crew failure to make use of APU air to help sustain cabin pressurisation during flight completion was noted.)
  • A320, vicinity Dublin Ireland, 2015 (On 3 October 2015, an Airbus A320 which had just taken off from Dublin experienced fumes from the air conditioning system in both flight deck and cabin. A 'PAN' was declared and the aircraft returned with both pilots making precautionary use of their oxygen masks. The Investigation found that routine engine pressure washes carried out prior to departure have been incorrectly performed and a contaminant was introduced into the bleed air supply to the air conditioning system as a result. The context for the error was found to be the absence of any engine wash procedure training for the Operator's engineers.)
  • A320, vicinity London Heathrow UK, 2019 (On 23 September 2019, the flight crew of an Airbus A320 on approach to London Heathrow detected strong acrid fumes on the flight deck and after donning oxygen masks completed the approach and landing, exited the runway and shut down on a taxiway. After removing their masks, one pilot became incapacitated and the other unwell and both were taken to hospital. The other occupants, all unaffected, were disembarked to buses. The very comprehensive investigation was unable to establish the origin of the fumes but did identify a number of circumstantial factors which corresponded to those identified in previous similar events.)

Related Articles