Descent-and-Approach Profile Management

Incorrect management of the descent-and-approach profile and/or aircraft energy condition may result in:

- A loss of situational awareness; and/or,
- An unstabilized approach.

Either situation increases the risk of approach-and-landing accidents, including those involving controlled flight into terrain (CFIT).

Statistical Data

The Flight Safety Foundation Approach-and-Landing Accident Reduction (ALAR) Task Force found that unstabilized approaches (i.e., approaches conducted either low/slow or high/fast) were a causal factor in 66 percent of 76 approach-and-landing accidents and serious incidents worldwide in 1984 through 1997.

The task force said that factors associated with being low/slow on approach include:

- "Inadequate awareness of automation/systems status;
- "Lack of vigilance and crew coordination, including omission of standard airspeed-and-altitude calls; and,
- "High workload and confusion during execution of nonprecision approaches."

The task force said that factors associated with being high/fast on approach include:

- "Overconfidence, lack of vigilance and 'press-on-itis';
- "Lack of crew coordination; and,
- "Accepting demanding air traffic control (ATC) clearances, leading to high-workload conditions."

Descent Preparation and Approach Briefing

To help prevent delaying initiation of the descent and to ensure optimum management of the descent-and-approach profile, the following procedures are recommended:

- Descent preparation and the approach briefing should be completed typically 10 minutes before the beginning-of-descent point (or when within very-high-frequency [VHF] communication range if automatic terminal information system [ATIS] information cannot be obtained 10 minutes before the beginning-of-descent point);
- If a standard terminal arrival (STAR) is included in the flight management system (FMS) flight plan but is not expected to be flown because of radar vectors, the STAR should be checked (track, distance, altitude and airspeed restrictions) against the expected routing to adjust the beginning-of-descent point;
- If descent initiation is delayed by ATC, airspeed should be reduced (as appropriate to the aircraft model) to minimize the effect of the delay on the descent profile;
- Wind-forecast data should be programmed on the appropriate FMS page at waypoints near the beginning-of-descent point and along the descent-profile path;
- If a missed approach procedure is included in the FMS flight plan, the FMS missed approach procedure should be checked against the approach chart; and,
- If FMS navigation accuracy does not meet the applicable criteria for descent, terminal area navigation or approach, no descent should be made below the minimum en route altitude (MEA) or minimum safe altitude (MSA) without prior confirmation of the aircraft position using raw data.
Achieving Flight Parameters

The flight crew must “stay ahead of the aircraft” throughout the flight. This includes achieving desired flight parameters (e.g., aircraft configuration, aircraft position, energy condition, track, vertical speed, altitude, airspeed and attitude) during the descent, approach and landing. Any indication that a desired flight parameter will not be achieved should prompt immediate corrective action or the decision to go around.

At the final approach fix (FAF) or the outer marker (OM), the crew should decide whether to proceed with the approach, based on the following factors:

- Ceiling and visibility are better than or equal to applicable minimums;
- Aircraft is ready (position, altitude, configuration, energy condition); and,
- Crew is ready (briefing completed, agreement on the approach).

If the required aircraft configuration and airspeed are not attained, or if the flight path is not stabilized when reaching the minimum stabilization height (1,000 feet above airport elevation in instrument meteorological conditions or 500 feet above airport elevation in visual meteorological conditions), a go-around should be initiated immediately.

The pilot not flying/pilot monitoring should announce any flight parameter that exceeds the criteria for any of the elements of a stabilized approach (see recommendations).

Descent Profile Monitoring

The descent profile should be monitored, using all available instruments and chart references, including:

- FMS vertical-deviation indication, as applicable;
- Raw data; and,
- Charted descent-and-approach profile.

Wind conditions and wind changes should be monitored closely to anticipate any decrease in head wind component or increase in tail wind component, and the flight path profile should be adjusted appropriately.

The descent also may be monitored and adjusted based on a typical 3,000 feet per 10 nautical mile (nm) descent gradient (corrected for the prevailing head wind component or tail wind component), while adhering to the required altitude/airspeed restrictions (deceleration management).

Below 10,000 feet, flying at 250 knots, the following recommendations may be used to confirm the descent profile and to ensure a smooth transition between the various approach phases:

- 9,000 feet above airport elevation at 30 nm from touchdown; and,
- 3,000 feet above airport elevation at 15 nm from touchdown (to allow for deceleration and slats/flaps extension).

Descent Profile Adjustment/Recovery

If the flight path is significantly above the desired descent profile (e.g., because of ATC restrictions or a greater-than-anticipated tail wind), the desired flight path can be recovered by:

- Reverting from FMS vertical navigation (VNAV) to a selected vertical mode, with an appropriate airspeed target (e.g., airspeed, heading, altitude) or vertical-speed target;
- Maintaining a high airspeed (and a steep angle of descent) as long as practical;

Recommended Elements of a Stabilized Approach

All flights must be stabilized by 1,000 ft above airport elevation in instrument meteorological conditions (IMC) and by 500 ft above airport elevation in visual meteorological conditions (VMC). An approach is stabilized when all of the following criteria are met:

1. The aircraft is on the correct flight path;
2. Only small changes in heading/pitch are required to maintain the correct flight path;
3. The aircraft speed is not more than $V_{REF} + 20$ kt indicated airspeed and not less than V_{MIN};
4. The aircraft is in the correct landing configuration;
5. Sink rate is no greater than 1,000 fpm; if an approach requires a sink rate greater than 1,000 fpm, a special briefing should be conducted;
6. Power setting is appropriate for the aircraft configuration and is not below the minimum power for approach as defined by the aircraft operating manual;
7. All briefings and checklists have been conducted;
8. Specific types of approaches are stabilized if they also fulfill the following: instrument landing system (ILS) approaches must be flown within one dot of the glideslope and localizer; a Category II or Category III ILS approach must be flown within the expanded localizer band; during a circling approach, wings should be level on final when the aircraft reaches 300 ft above airport elevation; and,
9. Unique approach procedures or abnormal conditions requiring a deviation from the above elements of a stabilized approach require a special briefing.

An approach that becomes unstabilized below 1,000 ft above airport elevation in IMC or below 500 ft above airport elevation in VMC requires an immediate go-around.

Source: FSF ALAR Task Force
• Using speed brakes (as allowed by applicable standard operating procedures [SOPs], depending on airspeed and configuration, keeping one hand on the speed-brake handle until the speed brakes are retracted);
• Extending the landing gear, as allowed by airspeed and configuration, if speed brakes are not sufficient; or,
• As a last resort, conducting a 360-degree turn (as practical, and with ATC clearance). Maintain instrument references throughout the turn to monitor and control the rate of descent, bank angle and aircraft position; this will help avoid loss of aircraft control or CFIT, and prevent overshooting the localizer or extended runway centerline.

If the desired descent flight path cannot be established, ATC should be notified for timely coordination.

Adverse Factors and Typical Errors

The following factors and errors often are observed during transition training and line training:
• Late descent, which results in rushing the descent, approach preparation and briefing, and increases the likelihood that important items will be omitted;
• Failure to cross-check target entry;
• Failure to allow for a difference between the expected routing and the actual routing (e.g., STAR vs. radar vectors);
• Distraction leading to or resulting from two heads down;
• Failure to resolve ambiguities, doubts or disagreements;
• Failure to effectively monitor descent progress using all available instrument references;
• Failure to monitor wind conditions and wind changes; and/or;
• Inappropriate technique to establish the descent profile.

Summary

The following should be emphasized during transition training, line training and line audits:
• Conduct timely descent-and-approach preparation;
• Adhere to SOPs for FMS setup;
• Cross-check all target entries;
• Use the primary flight display (PFD), navigation display (ND) and FMS to support and to illustrate the approach briefing;
• Confirm FMS navigation accuracy before selecting FMS modes for the descent and approach;
• Review terrain-awareness data and other approach hazards; and,
• Monitor the descent profile and adjust the descent profile as required.

The following FSF ALAR Briefing Notes provide information to supplement this discussion:

1. 1.1 — Operating Philosophy;
1. 1.3 — Golden Rules;
1. 4.2 — Energy Management;
1. 5.2 — Terrain;
1. 6.1 — Being Prepared to Go Around; and,
1. 7.1 — Stabilized Approach.

Notes

1. The Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force defines causal factor as “an event or item judged to be directly instrumental in the causal chain of events leading to the accident [or incident].” Each accident and incident in the study sample involved several causal factors.

3. The FSF ALAR Task Force defines press-on-itis as “continuing toward the destination despite a lack of readiness of the airplane or crew.”

4. The FSF ALAR Task Force defines raw data as “data received directly (not via the flight director or flight management computer) from basic navigation aids (e.g., ADF, VOR, DME, barometric altimeter).”

Related Reading From FSF Publications

FSF Editorial Staff. "Learjet Strikes Terrain When Crew Tracks False Gildeslope Indication and Continues Descent Below Published Decision Height." Accident Prevention Volume 56 (June 1999).

FSF Editorial Staff. "Different Altimeter Displays and Crew Fatigue Likely Contributed to Canadian Controlled-flight-into-terrain Accident.", Accident Prevention Volume 52 (December 1995).

FSF Editorial Staff. "Captain’s Failure to Establish Stabilized Approach Results in Controlled-flight-into-terrain Commuter Accident." Accident Prevention Volume 52 (July 1995).

Lawton, Russell. "Steep Turn by Captain During Approach Results in Stall and Crash of DC-8 Freighter." Accident Prevention Volume 51 (October 1994).

Lawton, Russell. "Breakdown in Coordination by Commuter Crew During Unstabilized Approach Results in Controlled-flight-into-terrain Accident." Accident Prevention Volume 51 (September 1994).

Notice

The Flight Safety Foundation (FSF) Approach-and-Landing Accident Reduction (ALAR) Task Force produced this briefing note to help prevent approach-and-landing accidents, including those involving controlled flight into terrain. The briefing note is based on the task force’s data-driven conclusions and recommendations, as well as data from the U.S. Commercial Aviation Safety Team’s Joint Safety Analysis Team and the European Joint Aviation Authorities Safety Strategy Initiative.

This briefing note is one of 33 briefing notes that comprise a fundamental part of the FSF ALAR Tool Kit, which includes a variety of other safety products that also have been developed to help prevent approach-and-landing accidents.

The briefing notes have been prepared primarily for operators and pilots of turbine-powered airplanes with underwing-mounted engines, but they can be adapted for those who operate airplanes with fuselage-mounted turbine engines, turboprop power plants or piston engines. The briefing notes also address operations with the following: electronic flight instrument systems; integrated autopilots; flight directors and autothrottle systems; flight management systems; automatic ground spoilers; autobrakes; thrust reversers; manufacturers/operators’ standard operating procedures; and, two-person flight crews.

This information is not intended to supersede operators’ or manufacturers’ policies, practices or requirements, and is not intended to supersede government regulations.

Copyright © 2009 Flight Safety Foundation
601 Madison Street, Suite 300, Alexandria, VA 22314-1756 USA
Tel. +1 703.739.6700 Fax +1 703.739.6708 www.flightsafety.org

In the interest of aviation safety, this publication may be reproduced, in whole or in part, in all media, but may not be offered for sale or used commercially without the express written permission of Flight Safety Foundation’s director of publications. All uses must credit Flight Safety Foundation.