Guide to Aircraft Ground Deicing

Issue 6 – January 2018

Jacques Leroux, Ph.D.
Jacques Leroux is Chair of the SAE G-12 Steering Group on Aircraft Ground Deicing, Co-chair of the SAE G-12 Aircraft Deicing and Runway Deicing Fluid Committees and Chair of the SAE/ICAO/IATA Council for Globalized Aircraft Deicing Standards. He holds a Ph.D. in Chemistry from McGill University and is a member of the Quebec Order of Chemists.

© 2018 Jacques Leroux
All rights reserved.
This document\(^1\) provides an introduction to aircraft ground deicing, a brief description of the forty-five current\(^2\) documents issued by the SAE G-12 Aircraft Ground Deicing Committee, documents issued by other SAE Committees, guidance issued by regulators, the FAA, Transport Canada, EASA and ICAO, documents issued by airframe manufacturers (e.g., Boeing), a list of abbreviations, an index\(^3\), and flowcharts for the documents and a list of preferred words and expressions.

Table of Contents

- Preface ... 9
- Changes in Issue 6 .. 11
- List of Indexed Documents ... 13
- Acknowledgments ... 15
- Abbreviations .. 16
- Introduction ... 21
- PART ONE: THE AIRCRAFT DEICING DOCUMENTS ... 31
- Documents Issued by SAE .. 31
- AIR6232 Aircraft Surface Coating Interaction with Aircraft Deicing/Anti-Icing Fluids 31
- ARP6852B Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids ... 34
- AS5901C Water Spray and High Humidity Endurance Test Methods for SAE AMS1424 and SAE AMS1428 Aircraft Deicing/Anti-icing Fluids ... 39

\(^1\) To receive updates of this Guide to Aircraft Ground Deicing (Guide) or to send comments, please communicate with Jacques Leroux, jleroux@dow.com. This Guide is available online: <https://www.sae.org/works/committeeHome.do?comtID=TEAG12ADF >.

\(^2\) This document is up-to-date as of January 20, 2018.

\(^3\) Citations and titles are quoted with original spelling but keywords and index words use United States English spelling.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS1424N Fluid, Aircraft Deicing/Anti-Icing, SAE Type I</td>
<td>41</td>
</tr>
<tr>
<td>AMS1424/1 Deicing/Anti-Icing Fluid, Aircraft SAE Type I Glycol (Conventional and Non-Conventional) Based</td>
<td>48</td>
</tr>
<tr>
<td>AMS1424/2 Deicing/Anti-Icing Fluid, Aircraft SAE Type I Non-Glycol Based</td>
<td>48</td>
</tr>
<tr>
<td>AMS1428J Fluid, Aircraft Deicing/Anti-Icing, Non-Newtonian, SAE Types II, III, and IV</td>
<td>49</td>
</tr>
<tr>
<td>AMS1428/1 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Glycol (Conventional and Non-Conventional) Based</td>
<td>57</td>
</tr>
<tr>
<td>AMS1428/2 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Non-Glycol Glycol Based</td>
<td>57</td>
</tr>
<tr>
<td>AS9968 Laboratory Viscosity Measurement of Thickened Aircraft Deicing/Anti-icing Fluids with the Brookfield LV Viscometer</td>
<td>58</td>
</tr>
<tr>
<td>AIR5704 Field Viscosity Test for Thickened Aircraft Anti-Icing Fluids</td>
<td>59</td>
</tr>
<tr>
<td>Documents Issued by the SAE G-12 Holdover Time Committee</td>
<td>61</td>
</tr>
<tr>
<td>ARP6207 Qualification Required for SAE Type I Aircraft Deicing/Anti-icing Fluids</td>
<td>61</td>
</tr>
<tr>
<td>ARP5945A Endurance Time Tests for SAE Type I Aircraft Deicing/Anti-icing Fluids</td>
<td>65</td>
</tr>
<tr>
<td>ARP5718B Qualifications Required for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids</td>
<td>68</td>
</tr>
<tr>
<td>ARP5485B Endurance Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids</td>
<td>74</td>
</tr>
<tr>
<td>AS5681B Minimum Operational Performance Specification for Remote On-Ground Ice Detection Systems</td>
<td>77</td>
</tr>
<tr>
<td>Documents Issued by the SAE G-12 Methods Committee</td>
<td>81</td>
</tr>
<tr>
<td>ARP4737J Aircraft Deicing/Anti-Icing Methods</td>
<td>81</td>
</tr>
<tr>
<td>AS6285 Aircraft Ground Deicing/Anti-Icing Processes</td>
<td>81</td>
</tr>
<tr>
<td>ARP6257 Aircraft Ground De/Anti-icing Communication Phraseology for Flight and Ground Crews</td>
<td>93</td>
</tr>
<tr>
<td>AS5537 Weather Support to Deicing Decision Making (WSDMM) Winter Weather Nowcasting System</td>
<td>93</td>
</tr>
<tr>
<td>AIR1335A Ramp De-icing</td>
<td>94</td>
</tr>
<tr>
<td>Documents Issued by the SAE G-12 Deicing Facilities Committee</td>
<td>95</td>
</tr>
<tr>
<td>ARP5660A Deicing Facility Operational Procedures</td>
<td>95</td>
</tr>
<tr>
<td>ARP4902B Design of Aircraft Deicing Facilities</td>
<td>97</td>
</tr>
<tr>
<td>AS5635 Message Boards (Deicing Facilities)</td>
<td>99</td>
</tr>
<tr>
<td>Documents Issued by the SAE G-12 Equipment Committee</td>
<td>101</td>
</tr>
<tr>
<td>ARP1971C Aircraft Deicing Vehicle - Self-Propelled</td>
<td>101</td>
</tr>
</tbody>
</table>
Table of Contents

AIR6284 Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants .. 103
ARP5058A Enclosed Operator’s Cabin for Aircraft Ground Deicing Equipment 104

Documents Issued by the SAE G-12 Training and Quality Control Committee 105
ARP5149B Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground . 105
ARP5149BDA (Digital Annex for ARP5149B) ... 111
ARP5646 Quality Program Guidelines for Deicing/Anti-Icing of Aircraft on the Ground 112
AS6286 Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground ... 114

AS6286/1 Processes Including Methods... 116
AS6286/2 Equipment ... 119
AS6286/3 Fluids ... 120
AS6286/4 Weather ... 122
AS6286/5 Health, Safety and First Aid.. 124
AS6286/6 Deicing/Anti-icing Diagrams/No Spray Zones .. 125
AS6332 Aircraft Ground Deicing/Anti-icing Quality Management 129

Documents Issued by the Federal Aviation Administration 135

FAA Notice N 8900.431 Revised FAA–Approved Deicing Program Updates, Winter 2017– 2018... 135

FAA Holdover Time Guidelines: Winter 2017-2018 – Revision 1.0: October 12, 2017 ... 145
FAA Holdover Time Regression Guidelines Information, Winter 2017-2018 – Original Issue: August 9, 2017 ... 147
FAA Advisory Circular AC 120-60B Ground Deicing and Anti-icing Program........ 149
FAA Advisory Circular AC 120-112 Use of Liquid Water Equivalent System to Determine Holdover Times or Check times of Anti-icing Fluids............................ 151
FAA Advisory Circular AC 150/5300-14C Design of Aircraft Deicing Facilities 152

Documents Issued by Transport Canada... 157

Transport Canada Holdover Time (HOT) Guidelines Regression Information Winter 2017- 2018, Original Issue: August 9, 2017... 162
Transport Canada Advisory Circular AC 700-030 Electronic Holdover Time (eHOT) Applications... 163
Transport Canada Exemption From Sections 1.0, 3.0, 6.0, 6.2 and 7.111 of Standard 622.11 Ground Icing Operations Made Pursuant for Subsection 602.11(4) of the Canadian Aviation Regulations ... 172

Barry B. Myers, Aircraft Anti-icing Fluid Endurance, Holdover, and Failure Times Under Winter Precipitations Conditions, Transportation Development Centre, Transport Canada, TP 13832, November 2001 ... 173

Documents Issued by EASA .. 177

- EASA GM1 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: Terminology .. 178
- EASA GM2 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing Procedures ... 179
- EASA GM3 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing Background Information ... 180

Documents Issued by ICAO .. 181

- ICAO Doc 9640-AN/940 Manual of Aircraft Ground De-icing/Anti-icing Operations 181

Documents Issued by Boeing ... 188

- Haruiko Oda et al, Safe Winter Operations .. 188

PART TWO: THE RUNWAY DEICING DOCUMENTS .. 191

Documents Issued by the SAE G-12 Runway Deicing Fluid Committee 191

- AMS1431D Compound, Solid Runway and Taxiway Deicing/Anti-Icing 191
- AMS1435C Fluid, Generic, Deicing/Anti-Icing Runways and Taxiways 193
- AIR6130A Cadmium Plate Cyclic Corrosion Test .. 194
- AIR6170A Ice Melting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals ... 195
- AIR6172A Ice Undercutting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals ... 196
- AIR6211A Ice Penetration Test Method for Runways and Taxiways Deicing/Anti-Icing Chemicals .. 197

Documents Issued by the SAE A-5A Wheels, Brakes and Skid Control Committee 197

- AIR5490A Carbon Brake Contamination and Oxidation .. 197
- AIR5567A Test Method for Catalytic Brake Oxidation .. 202

Documents Issued by SAE G-15 Airport Snow and Ice Control ... 205
Table of Contents

AMS1448B Sand, Airport Snow and Ice Control ... 205
Documents Issued by the FAA .. 205
FAA Special Airworthiness Information Bulletin SAIB NM-08-27R1 Landing gear: Catalytic
Oxidation of Aircraft Carbon Brakes due to Runway De-icing (RDI) Fluids 205
Documents Issued by Transport Canada ... 206
Transport Canada, Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icing
(RDI) Fluids, Service Difficulty Advisory AV-2009-03 .. 206
Documents Issued by EASA ... 207
EASA Safety Information Bulletin SIB No.: 2018-01 Information on Materials Used for
Runway and Taxiway De/Anti-icing ... 207
EASA Safety Information Bulletin SIB No.: 2008-19R2 Catalytic Oxidation of Aircraft
Carbon Brakes due to Runway De-icers .. 208
EASA AMC1 ADR.OPS.C010 Pavements, Other Ground Surfaces, and Drainage 209
Documents Issued by Boeing ... 211
Michael Arriaga, Effects of Alkali Metal Runway Deicers on Carbon Brakes 211
List of Preferred Words and Expressions ... 213
Index ... 217

Figure 1 Aircraft Deicing Documents .. 215
Figure 2 Runway Deicing Documents ... 216

Table 1 Correspondence of Existing SAE Standards and Global Aircraft Deicing Standards..... 29
Preface

This work was initiated subsequent to needs expressed by members of SAE G-12 at the Montreal November 2015 meeting and by encouragement by a family member, JGB, who does similar work in another area.

Indexing is a personal endeavor, more of an art than a science. It reflects the way the underlying concepts of the indexed document organize themselves in the mind, at the time of indexing, and the way I imagine users will seek information. Users will, undoubtedly, think differently about the concepts and certainly would have indexed them differently. Nevertheless, I hope, some will find the work useful. Suggestions to improve the Guide to Aircraft Ground Deicing are welcome.

JL

Savannah, May 7, 2016
Changes in Issue 6

In Issue 6, the following documents were indexed:

- AMS1448B Sand, Airport Snow and Ice Control
- ARP5485B Endurance Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids
- ARP5718B Qualifications Required for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids
- ARP5945A Endurance Time Tests for SAE Type I Aircraft Deicing/Anti-icing Fluids
- ARP6207 Qualification Required for SAE Type I Aircraft Deicing/Anti-icing Fluids
- Arriaga, Michael, Effects of Alkali Metal Runway Deicers on Carbon Brakes, Boeing Aero, Issue 53, Quarter 01, 2014
- EASA AMC1 ADR.OPS.C010 Pavements, Other Ground Surfaces, and Drainage
- EASA Safety Information Bulletin SIB No.: 2018-01 Information on Materials Used for Runway and Taxiway De/Anti-icing
- Oda, Haruiiko et al, Safe Winter Operation, Boeing Aero, Quarter 04, 2010

Documents cancelled, revised or obsolete:

- Transport Canada Advisory Circular AC 700-040 Supplemental Holdover Timetables and Regression Information for Society of Automotive Engineers (SAE) Type II and IV Fluids, September 30, 2016
- ARP5718A Process to Obtain Holdover Times for Aircraft Deicing/Anti-Icing Fluids, SAE AMS1428 Types II, III, and IV
- ARP5485A Endurance Time Tests for Aircraft Deicing/Anti-icing Fluids SAE Type II, III, and IV

A short description of the Royal Air Maroc collision at Montreal (Mirabel) airport and of the Iberia IB 3195 collision at Munich airport and more information on the source of data for holdover time guidelines were added to the introduction.
List of Indexed Documents

Arriaga, Michael, Effects of Alkali Metal Runway Deicers on Carbon Brakes, Boeing
EASA AMC1 ADR.OPS.C010 Pavements, Other Ground Surfaces, and Drainage
EASA GM1 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: Terminology
EASA GM2 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing
EASA GM3 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing
Background Information
Aircraft De-Icing Fluids on Anti-Icing Holdover Protection and Potential Aircraft Corrosion
EASA Safety Information Bulletin No.: 2017-11 Global De-icing Standards
EASA Safety Information Bulletin SIB No.: 2008-19R2 Catalytic Oxidation of Aircraft Carbon Brakes
due to Runway De-icers, April 23, 2013
EASA Safety Information Bulletin SIB No.: 2018-01 Information on Materials Used for Runway and
Taxiway De/Anti-icing
FAA Advisory Circular AC 120-112 Use of Liquid Water Equivalent System to Determine Holdover
Times or Check times of Anti-icing Fluids, July 14, 2015.
FAA Advisory Circular AC 120-60B Ground Deicing and Anti-icing Program, December 20, 2004
FAA Holdover Time Regression Guidelines Information, Winter 2017-2018 – Original Issue: August 9,
2017
FAA Notice N 8900.431 Revised FAA–Approved Deicing Program Updates, Winter 2017–2018
FAA Special Airworthiness Information Bulletin SAIB NM-08-27R1 Landing gear: Catalytic Oxidation
of Aircraft Carbon Brakes due to Runway De-icing (RDI) Fluids, December 31, 2008
Myers, Barry B., Aircraft Anti-icing Fluid Endurance, Holdover, and Failure Times Under Winter
Precipitations Conditions, Transportation Development Centre, Transport Canada, TP 13832,
November 2001
Oda, Haruiko et al, Safe Winter Operation, Boeing
SAE AIR5490A Carbon Brake Contamination
SAE AIR5567A Test Method for Catalytic Brake Oxidation
SAE AIR5704 Field Viscosity Test for Thickened Aircraft Anti-Icing Fluids
SAE AIR6130A Cadmium Plate Cyclic Corrosion Test
SAE AIR6170A Ice Melting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals
SAE AIR6172A Ice Undercutting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals
SAE AIR6211A Ice Penetration Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals
SAE AIR6232 Aircraft Surface Coating Interaction with Aircraft Deicing/Anti-Icing Fluids
SAE AIR6284 Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants
SAE AMS1424/1 Deicing/Anti-icing Fluid, Aircraft SAE Type I Glycol (Conventional and Non-
Conventional) Based
SAE AMS1424/2 Deicing/Anti-icing Fluid, Aircraft SAE Type I Non-glycol Based
SAE AMS1424N Fluid, Aircraft Deicing/Anti-icing, SAE Type I
SAE AMS1428/1 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III
and IV Glycol (Conventional and Non-Conventional) Based
SAE AMS1428/2 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III
and IV Non-Glycol Glycol Based
Guide to Aircraft Ground Deicing – Issue 6

SAE AMS1428J Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Types II, III, and IV
SAE AMS1431D Compound, Solid Runway and Taxiway Deicing/Anti-Icing
SAE AMS1435C Fluid, Generic, Deicing/Anti-icing Runways and Taxiways
SAE AMS1448B Sand, Airport Snow and Ice Control
SAE ARP1971C Aircraft Deicing Vehicle - Self-Propelled
SAE ARP4902B Design of Aircraft Deicing Facilities
SAE ARP5058A Enclosed Operator’s Cabin for Aircraft Ground Deicing Equipment
SAE ARP5149B Training Program Guidelines for Deicing/Anti-icing of Aircraft on Ground
SAE ARP5149BDA Digital Annex
SAE ARP5485B Endurance Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids
SAE ARP5646 Quality Program Guidelines for Deicing/Anti-icing of Aircraft on the Ground
SAE ARP5660A Deicing Facility Operational Procedures
SAE ARP5718B Qualifications Required for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids
SAE ARP5945A Endurance Time Tests for SAE Type I Aircraft Deicing/Anti-icing Fluids
SAE ARP6207 Qualification Required for SAE Type I Aircraft Deicing/Anti-icing Fluids
SAE ARP6257 Aircraft Ground De/anti-icing Communication Phraseology for Flight and Ground Crews
SAE ARP6852B Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids
SAE AS5537 Weather Support to Deicing Decision Making (WSDMM) Winter Weather Nowcasting System
SAE AS5635 Message Boards (Deicing Facilities)
SAE AS5681B Minimum Operational Performance Specification for Remote On-Ground Ice Detection Systems
SAE AS5901C Water Spray and High Humidity Endurance Test Methods for SAE AMS1424 and SAE AMS1428 Aircraft Deicing/Anti-icing Fluids
SAE AS6285 Aircraft Ground Deicing/Anti-icing Processes
SAE AS6286 Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground
SAE AS6286/1 Processes Including Methods
SAE AS6286/2 Equipment
SAE AS6286/3 Fluids
SAE AS6286/4 Weather
SAE AS6286/5 Health, Safety and First Aid
SAE AS6286/6 Deicing/Anti-Icing Diagrams/No Spray Zones
SAE AS6332 Aircraft Ground Deicing/Anti-icing Quality Management
SAE AS9968 Laboratory Viscosity Measurement of Thickened Aircraft Deicing/Anti-icing Fluids with the Brookfield LV Viscometer
Transport Canada Advisory Circular AC 700-030 electronic Holdover Time (eHOT) Applications, November 18, 2014
Transport Canada Exemption from Sections 1.0, 3.0, 6.0, 6.2 and 7.111 of Standard 622.11 Ground Icing Operations Made Pursuant for Subsection 602.11(4) of the Canadian Aviation Regulations
Transport Canada Guidelines for Aircraft Ground Icing Operations TP 14052E, 2nd ed, April 2005
Transport Canada Holdover Time (HOT) Guidelines Regression Information Winter 2017-2018, Original Issue: August 9, 2017
Transport Canada Holdover Time Guidelines: Winter 2017-2018, Revision 1.0
Acknowledgments

Many, including Michael Arriaga, Randy Baker, Jean-Denis Brassard, Stephanie Bendickson, Yvan Chabot, Kevin Connor, Lynn Davies, John D'Avirro, Ken Eastman, Chuck Enders, Guillermo Felix, Alberto Fernandez-Lopez, Kevin Flick, Mike Hanlon, Jacob Klain, Carlton Lambiasi, George Legarreta, Graham Morgan, Brody Russell, Detlef Schulz, Ian Sharkey, Jacqueline Teres, Alun Williams, and Roger Zbinden made helpful suggestions or provided information to improve this Guide. Thank you.

JL

January 20, 2018
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4A</td>
<td>Airlines for America</td>
</tr>
<tr>
<td>A4E</td>
<td>Airlines for Europe</td>
</tr>
<tr>
<td>AAF</td>
<td>aircraft anti-icing fluid</td>
</tr>
<tr>
<td>AAT</td>
<td>aerodynamic acceptance test</td>
</tr>
<tr>
<td>AC</td>
<td>Advisory Circular (FAA)</td>
</tr>
<tr>
<td>ACARS</td>
<td>Aircraft Communications Addressing and Reporting System</td>
</tr>
<tr>
<td>ADF</td>
<td>aircraft deicing fluid</td>
</tr>
<tr>
<td>ADF/AAF</td>
<td>aircraft deicing/anti-icing fluid</td>
</tr>
<tr>
<td>AEA</td>
<td>Association of European Airlines</td>
</tr>
<tr>
<td>AFM</td>
<td>Aircraft Flight Manual</td>
</tr>
<tr>
<td>AFS</td>
<td>Flight Standard Service (FAA)</td>
</tr>
<tr>
<td>AIP</td>
<td>Aeronautical Information Publication</td>
</tr>
<tr>
<td>AIR</td>
<td>Aerospace Information Report (SAE)</td>
</tr>
<tr>
<td>aka</td>
<td>also known as</td>
</tr>
<tr>
<td>AMC</td>
<td>Acceptable Means of Compliance (EASA)</td>
</tr>
<tr>
<td>AMIL</td>
<td>Anti-icing Materials International Laboratory</td>
</tr>
<tr>
<td>AMM</td>
<td>Aircraft Maintenance Manual</td>
</tr>
<tr>
<td>AMS</td>
<td>Aerospace Material Specification (SAE)</td>
</tr>
<tr>
<td>AO</td>
<td>anti-oxidant</td>
</tr>
<tr>
<td>AOM</td>
<td>Aircraft Operating Manual</td>
</tr>
<tr>
<td>AOS</td>
<td>alkali organic salt</td>
</tr>
<tr>
<td>APU</td>
<td>auxiliary power unit</td>
</tr>
<tr>
<td>app</td>
<td>application (electronic)</td>
</tr>
<tr>
<td>ARC</td>
<td>Advisory Rulemaking Committee (FAA)</td>
</tr>
<tr>
<td>ARP</td>
<td>Aerospace Recommended Practice (SAE)</td>
</tr>
<tr>
<td>AS</td>
<td>Aerospace Standard (SAE)</td>
</tr>
<tr>
<td>ASOS</td>
<td>automated surface observing system</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Management (ICAO)</td>
</tr>
<tr>
<td>ATOS</td>
<td>Air Transportation Oversight System (US)</td>
</tr>
<tr>
<td>AWOS</td>
<td>Automatic Weather Observation System</td>
</tr>
<tr>
<td>BAe</td>
<td>British Aerospace</td>
</tr>
<tr>
<td>BFU</td>
<td>Bundsstelle für Flugunfalluntersuchung⁴</td>
</tr>
<tr>
<td>BLDT</td>
<td>boundary layer displacement thickness</td>
</tr>
<tr>
<td>BOD</td>
<td>biochemical oxygen demand</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>ca</td>
<td>circa (approximately)</td>
</tr>
<tr>
<td>CAAC</td>
<td>Civil Aviation Administration of China</td>
</tr>
<tr>
<td>CAR</td>
<td>Canadian Aviation Regulation</td>
</tr>
<tr>
<td>CASI</td>
<td>Civil Aviation Safety Inspector (Transport Canada)</td>
</tr>
<tr>
<td>CBDS</td>
<td>computer based deicing simulator</td>
</tr>
<tr>
<td>CBT</td>
<td>computer based training</td>
</tr>
</tbody>
</table>

⁴ German Federal Bureau of Aircraft Accident Investigation.
Abbreviations

CDF centralized deicing facility
CEPA Canadian Environmental Protection Act
CFR Code of Federal Regulations (US)
CLmax 3D maximum lift coefficient
CML Consumable Materials List (Airbus)
COD chemical oxygen demand
CSSF cold soaked fuel frost
CT check time
CTDS check time determination system
DAQCP Deicing/Anti-icing Quality Control Pool (IATA)
DCT data collection tool (FAA)
DDF designated deicing facility
DEG diethylene glycol
EASA European Aviation Safety Agency
EFB electronic flight bag
EG ethylene glycol
eHOT app electronic holdover time application
eHOT electronic holdover time
e-learning electronic learning
EMB electronic message board
EU European Union
EUROCAE European Organisation for Civil Aviation Equipment
FAA Federal Aviation Administration, United States Department of Transportation
FAS forced air system
FBO fixed base operator
FCOM Flight Crew Operation Manual
FMH-1 Federal Meteorological Handbook No. 1, Surface Weather Observations and Reports (US)
FPD freezing point depressant
FSDO Flight Standards District Office (FAA)
FSIMS Flight Standard Information Management System (FAA)
G-12 ADF G-12 Aircraft Deicing Fluid Committee (SAE)
G-12 AWG G-12 Aerodynamics Working Group (SAE)
G-12 DF G-12 Deicing Facility Committee (SAE)
G-12 E G-12 Equipment Committee (SAE)
G-12 FG G-12 Future Technology Committee (SAE)
G-12 HOT G-12 Holdover Time Committee (SAE)
G-12 M G-12 Methods Committee (SAE)
G-12 RDF G-12 Runway Deicing fluid Committee (SAE)
G-12 Steering G-12 Steering Group (SAE)
G-12 T G-12 Training and Quality Control Committee (SAE)
GAC glycerine acetate
GIDS ground ice detection system
GIP Ground Icing Program (FAA and Transport Canada)
GM Guidance Material (EASA)
GOFR General Operating and Flight Rules (Transport Canada)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRV</td>
<td>glycol recovery vehicle</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>HHET</td>
<td>high humidity endurance test</td>
</tr>
<tr>
<td>HOT</td>
<td>holdover time</td>
</tr>
<tr>
<td>HOTDR</td>
<td>holdover time determination report</td>
</tr>
<tr>
<td>HOTDS</td>
<td>holdover time determination system</td>
</tr>
<tr>
<td>HOWV</td>
<td>highest on-wing viscosity</td>
</tr>
<tr>
<td>HQ</td>
<td>Headquarters (FAA)</td>
</tr>
<tr>
<td>HUPR</td>
<td>highest usable precipitation rate</td>
</tr>
<tr>
<td>IAC</td>
<td>Interstate Aviation Committee</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JAR</td>
<td>Joint Aviation Authorities (European Union)</td>
</tr>
<tr>
<td>KAC</td>
<td>potassium acetate</td>
</tr>
<tr>
<td>KFOR</td>
<td>potassium formate</td>
</tr>
<tr>
<td>LOUT</td>
<td>lowest operational use temperature</td>
</tr>
<tr>
<td>LOWV</td>
<td>lowest on-wing viscosity</td>
</tr>
<tr>
<td>LUPR</td>
<td>lowest usable precipitation rate</td>
</tr>
<tr>
<td>LWE</td>
<td>liquid water equivalent</td>
</tr>
<tr>
<td>LWES</td>
<td>liquid water equivalent system</td>
</tr>
<tr>
<td>METAR</td>
<td>Meteorological Terminal Aviation Routine Weather Report</td>
</tr>
<tr>
<td>METREP</td>
<td>meteorological report</td>
</tr>
<tr>
<td>MOPS</td>
<td>minimum operational performance specification</td>
</tr>
<tr>
<td>MOWV</td>
<td>maximum on-wing viscosity<sup>5</sup></td>
</tr>
<tr>
<td>MSDS</td>
<td>material safety data sheet</td>
</tr>
<tr>
<td>NAA</td>
<td>national aviation authorities</td>
</tr>
<tr>
<td>NAAC</td>
<td>sodium acetate</td>
</tr>
<tr>
<td>NAFO</td>
<td>sodium formate</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCG</td>
<td>non-conventional glycol</td>
</tr>
<tr>
<td>NG</td>
<td>non-glycol</td>
</tr>
<tr>
<td>NOTAM</td>
<td>notice to airmen</td>
</tr>
<tr>
<td>NTSB</td>
<td>National Transportation Safety Board (US)</td>
</tr>
<tr>
<td>OACI</td>
<td>Organisation de l’aviation civile internationale (ICAO)</td>
</tr>
<tr>
<td>OAT</td>
<td>outside air temperature</td>
</tr>
<tr>
<td>OEM</td>
<td>original equipment manufacturer</td>
</tr>
<tr>
<td>p</td>
<td>page (plural pp)</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>PANS</td>
<td>Procedure for Air Navigation Services (ICAO)</td>
</tr>
<tr>
<td>par</td>
<td>paragraph</td>
</tr>
<tr>
<td>PG</td>
<td>propylene glycol</td>
</tr>
<tr>
<td>PIC</td>
<td>pilot-in-command</td>
</tr>
<tr>
<td>POI</td>
<td>Principal Operations Inspector (FAA and Transport Canada)</td>
</tr>
</tbody>
</table>

⁵ MOWV stands for maximum on-wing viscosity. HOWV stands for highest on-wing viscosity. There are synonymous. The use of HOWV is preferred because there is a risk of confusion with the MOWV which could erroneously thought of as minimum on-wing viscosity.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTW</td>
<td>Publicly Owned Treatment Works (US)</td>
</tr>
<tr>
<td>PRI</td>
<td>Performance Review Institute</td>
</tr>
<tr>
<td>PTO</td>
<td>power takeoff (for deicing units)</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>QMS</td>
<td>quality management system</td>
</tr>
<tr>
<td>RDF</td>
<td>runway deicing fluid</td>
</tr>
<tr>
<td>RDP</td>
<td>runway deicing product</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index</td>
</tr>
<tr>
<td>RMK</td>
<td>remark</td>
</tr>
<tr>
<td>RMSE</td>
<td>root mean square error</td>
</tr>
<tr>
<td>ROGIDS</td>
<td>remote on-ground ice detection systems</td>
</tr>
<tr>
<td>RVR</td>
<td>runway visibility range</td>
</tr>
<tr>
<td>s</td>
<td>second(s)</td>
</tr>
<tr>
<td>s</td>
<td>section (plural ss)</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SAIB</td>
<td>Special Airworthiness Information Bulletin (FAA)</td>
</tr>
<tr>
<td>SAS</td>
<td>Safety Assurance System (US)</td>
</tr>
<tr>
<td>SCOUIC</td>
<td>Standing Committee on Operations Under Icing Conditions (Transport Canada)</td>
</tr>
<tr>
<td>SD</td>
<td>Safety Directive (EASA)</td>
</tr>
<tr>
<td>SDS</td>
<td>safety data sheet</td>
</tr>
<tr>
<td>SHRP</td>
<td>Strategic Highway Research Program (US)</td>
</tr>
<tr>
<td>SIAGDP</td>
<td>Standardized International Aircraft Ground Deicing Program</td>
</tr>
<tr>
<td>SIB</td>
<td>Safety Information Bulletin (EASA)</td>
</tr>
<tr>
<td>SLD</td>
<td>supercooled large droplets</td>
</tr>
<tr>
<td>SMI</td>
<td>Scientific Materials International</td>
</tr>
<tr>
<td>SMS</td>
<td>safety management system</td>
</tr>
<tr>
<td>SNOWTAM</td>
<td>snow warning to airmen</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operation procedure</td>
</tr>
<tr>
<td>SPECI</td>
<td>aviation special weather report</td>
</tr>
<tr>
<td>STP</td>
<td>standard teaching plan</td>
</tr>
<tr>
<td>TAF</td>
<td>Terminal Aerodrome Forecast</td>
</tr>
<tr>
<td>TAT</td>
<td>total air temperature</td>
</tr>
<tr>
<td>TC</td>
<td>Transport Canada</td>
</tr>
<tr>
<td>TCCA</td>
<td>Transport Canada Civil Aviation</td>
</tr>
<tr>
<td>TOD</td>
<td>total oxygen demand</td>
</tr>
<tr>
<td>Type I</td>
<td>SAE AMS1424 Type I Aircraft Deicing/Anti-icing Fluid</td>
</tr>
<tr>
<td>Type II</td>
<td>SAE AMS1428 Type II Aircraft Deicing/Anti-icing Fluid</td>
</tr>
<tr>
<td>Type III</td>
<td>SAE AMS1428 Type III Aircraft Deicing/Anti-icing Fluid</td>
</tr>
<tr>
<td>Type IV</td>
<td>SAE AMS1428 Type IV Aircraft Deicing/Anti-icing Fluid</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
The abbreviation “v” is used to compare notions; for example, for the index entry “frost point v dewpoint, 139, 159”, one would find information comparing frost point and dewpoint on pages 139 and 159. It is also used in the usual scientific manner meaning “as a function of”, for example, as in “Type I wetting v time”.

6 The abbreviation “v” is used to compare notions; for example, for the index entry “frost point v dewpoint, 139, 159”, one would find information comparing frost point and dewpoint on pages 139 and 159. It is also used in the usual scientific manner meaning “as a function of”, for example, as in “Type I wetting v time”.

v versus 6
V1 takeoff decision speed
V2 takeoff safety speed
Vlof lift-off speed
Vmu minimum unstick speed
Vr rotation speed
VS start up velocity
VS1g 1-g stall speed
VSZ vehicle safety zone
WG Working Group (SAE)
WMO World Meteorological Organization
WSET water spray endurance test
Introduction

Objective. Over the years, documentation on aircraft ground deicing has increased considerably. Those less familiar with the documentation, and even those familiar with the field, sometimes, find it difficult to find specific information in authoritative documentation. The purpose of this document is to index the available current documentation and make it easier to find specific information related to aircraft ground deicing.

Accidents. NASA used to maintain an interactive map with the location of accidents and near misses related to aircraft ground icing. Unfortunately, the information does not appear to be available on the web anymore. Most accidents occur when there is no deicing or improper deicing. Collisions between deicing units and aircraft can have severe consequences. Near misses, such as aborted takeoffs and successful landings, after control problems or engine icing, have been reported. Below are key accidents which changed the way industry deals with ground deicing issues.

Air Florida Flight 90. On January 13, 1982, after a takeoff run with adhering snow and ice to the aircraft, Air Florida Flight 90 hit the 14th Street Bridge near Washington National Airport. It plunged in the Potomac River killing 69. The NTSB conclusions were:

The National Transportation Safety Board determines that the probable cause of this accident was the flightcrew’s failure to use engine anti-ice during ground operation and takeoff, their decision to take off with snow/ice on the airfoil surfaces of the aircraft, and the captain’s failure to reject the takeoff during the early stage when his attention was called to anomalous engine instrument readings. Contributing to the accident were the prolonged ground delay between deicing and the receipt of ATC takeoff clearance during which the airplane was exposed to continual precipitation, the known inherent pitchup characteristics of the B-737 aircraft when the leading edge is contaminated with even small amounts of snow or ice, and the limited experience of the flightcrew in jet transport winter operations.7

NTSB recommendation A-82-9 read as follows:

Immediately require flightcrews to visually inspect wing surfaces before takeoff if snow or precipitation is in progress and the time elapsed since either deicing or the last confirmation that the surfaces were clear exceeds 20 minutes to ensure compliance with 14 CFR121.629(b) which prohibits takeoff if ice, snow or frost is adhering to the wings or control surfaces.8

FAA’s response to recommendation A-82-9 was that reference to such a time as 20 minutes was “not in the best interest of aviation” as ice could form in shorter period of time.9 As a result of the Air Florida accident, R&D effort was accelerated to understand aircraft ground icing.

Two accidents in the late 1980’s and early 1990’s and the following in-depth investigations profoundly changed the way aircraft ground deicing is understood and performed.

\textit{The Dryden Accident}. Air Ontario Flight 1363 Fokker F-28 aircraft crashed shortly after departure near Dryden, Ontario, on March 10, 1989. It was snowing that afternoon. The flightcrew did not request deicing. It attempted to takeoff with frozen contamination on the aircraft. Unable to gain altitude, the aircraft crashed killing 24 and injuring 69 on-board. This accident was the subject of a judicial commission of enquiry led by Justice Virgil P. Moshansky.10 Rather than satisfying himself with the immediate cause of the accident, pilot error, Justice Moshansky sought an understanding of the distant but effective causes of the accident.11 He launched what was to be a systemic approach to understanding the accident: a thorough analysis of the Canadian aviation system. He attributed the ultimate probable causes of the accident not only to pilot error but a systemic failure of the air transportation system. His recommendation number 167 reads as follows:

\textit{That Transport Canada actively participate in the research and development necessary to establish safety effectiveness measurement systems that will lead to...}
Introduction

the most efficient use of resources in assuring safety. Cooperation with the United States Federal Aviation Administration and other international groups should be encouraged and resourced to obtain the maximum and most expedient benefits from such programs.12

This incited Transport Canada to a) allocate significant resources to research and development, in close cooperation with the FAA, in the area of aircraft ground deicing and b) participate in the SAE G-12 Committees, resulting to the development of authoritative standards and guidance documentation. The report facilitated the use of anti-icing fluids in Canada by encouraging the regulator to provide the necessary technical evaluation and regulatory framework for their use at large airports across the country.

USAir Flight 405. Three years after the Dryden accident, on March 22, 1992, another Fokker F-28 crashed at takeoff from LaGuardia Airport killing 27 due to ice accumulation on critical surfaces, 35 minutes following deicing with Type I fluid only. The National Transportation Safety Board, not unlike the Moshansky Inquiry, attributed probable cause of the accident to failure of the airlines industry and regulator to “to provide flightcrews with procedures, requirements, and criteria compatible with departure delays in conditions conducive to airframe icing and the decision by the flightcrew to takeoff without positive assurance that the aircraft wings were free of ice accumulation after 35 minutes of exposure to precipitation following de-icing”.

Since 1993, use of anti-icing fluid has become much more prevalent. FAA, in cooperation with Transport Canada, has pursued vigorously the fundamental understanding of aircraft icing and the development and dissemination of guidance, such as the *Holdover Time Guidelines*, and documentation related to aircraft ground deicing. FAA, like Transport Canada, exercises leadership positions in SAE G-12.

Royal Air Maroc Collision at Montreal (Mirabel) Airport. One should not think, that, in ground deicing, the only danger is frozen contamination on the aircraft. The Royal Air Maroc accident is a tragic example of what can go wrong in the deicing process itself. On January 21, 1995, the Royal Air Maroc 747-400 was parked at the deicing pad at Mirabel airport being deiced by a crew of Canadian Airlines International Ltd. The four engine were running. The flightcrew heard “dégivrage terminé” (deicing completed). The message was not intended for the flightcrew but for

the deicing coordinator. The pilot attempted to communicate with the deicing crew without success. The Transportation Safety Board of Canada\(^\text{13}\) concluded that engine noise probably prevented the deicing crew from hearing the pilot. Radio-communication equipment was not designed for engines-on operations. Communications protocols with the ice crew, apron control and flightcrew were inadequate and engines-on deicing training was lacking. The perimeter of the aircraft was not clear. Two deicing vehicles were in front of the horizontal stabilizer of the aircraft. In the communication confusion, the aircraft started to taxi. It hit the deployed booms of the deicing vehicles. The deicing vehicles were overturned. The two deicing vehicle drivers sustained minor injuries. The three occupants of the deicing baskets fell from a height of 15 meters. The three sustained fatal injuries.

Near-misses have occurred at various airports since the Royal Air Maroc fatal accident.

Iberia IB 3195 Collision at Munich Airport. In a sequence of events, uncannily similar to the Royal Air Maroc, a collision occurred at Munich airport, twenty one years later, on January 20, 2016. The Iberia flightcrew was configuring the aircraft for deicing at a deicing pad. The copilot erroneously pushed the DISCH button on the cargo smoke panel discharging fire suppression product in the cargo hold. He should have pushed the DITCHING button on the cabin pressure panel to appropriately set the air conditioning units. With the fire suppressant discharged, the aircraft would not fly and did not need deicing anymore. The pilot conveyed to the deicing crew there was a technical problem and needed “to go back to the stand”. The ground crew understood there was a mechanical problem but did not understand the aircraft would not need deicing. There was communication confusion between the flightcrew and the deicing crew; standard phraseology was not used. Two deicing unit remained in position, ready to start deicing. Their booms were in front of the winglets. The perimeter was not clear. Iberia flight 3195 Airbus 320 began to taxi,

hitting the booms. And almost overturning the deicing units. No one was injured. The German Federal Bureau of Aircraft Accident Investigation (BFU)14 called it a serious accident.

\textit{Regulations.} Countries issue regulations prohibiting takeoff of aircraft contaminated with adhering frozen deposits. The regulations are enforced by National Aviation Authorities (NAA, also known as regulators) such as the United States Federal Aviation Administration (FAA)15, Transport Canada (TC)16, the Civil Aviation Administration of China (CAAC) or supra national authorities such as the European Aviation Safety Agency (EASA).17

\textit{Guidance and advisory material.} The regulations prohibiting takeoff with frozen contamination require guidance material for compliance. Guidance and advisory material is issued by the regulators (e.g., EASA, FAA, Transport Canada), ICAO18, IATA, IAC19 and airframe manufacturers such as Boeing20 and Airbus.21

\textit{Holdover Time Guidelines.} SAE Type I, II, III and IV fluids, during winter operations, provide a limited period of protection against frozen or freezing precipitations while the aircraft is on the

15 United States 14 CFR § 121.629 (b) “No person may take off an aircraft when frost, ice, or snow is adhering to the wings, control surfaces, propellers, engine inlets, or other critical surfaces of the aircraft or when the takeoff would not be in compliance with paragraph (c) of this section. Takeoffs with frost under the wing in the area of the fuel tanks may be authorized by the Administrator.”, online: <https://www.gpo.gov/fdsys/pkg/CFR-2007-title14-vol2/xml/CFR-2007-title14-vol2-sec121-629.xml>.

16 Canadian Aviation Regulations SOR/96-433, s. 602.11 (2) “No person shall conduct or attempt to conduct a takeoff in an aircraft that has frost, ice or snow adhering to any of its critical surfaces”, online: <http://laws-lois.justice.gc.ca/eng/regulations/SOR-96-433/section-602.11-20140529.html>.

17 EASA CAT.OP.MPA.250 Ice and other contaminants — ground procedures

\begin{enumerate}
\item The operator shall establish procedures to be followed when ground deicing and anti-icing and related inspections of the aircraft are necessary to allow the safe operation of the aircraft.
\item The commander shall only commence take-off if the aircraft is clear of any deposit that might adversely affect the performance or controllability of the aircraft, except as permitted under (a) and in accordance with the AFM. online: <http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:296:0001:0148:EN:PDF>.
\end{enumerate}

19 E. Petrov et al., \textit{Methodical Recommendations: Airplane Protection From Icing Up On the Ground, Revision 3} (Moscow: IAC, September 2017), online: <http://mak-iac.org/upload/iblock/cd3/Methodical%20Recommendations%20Rev.3%202017.pdf>.

21 \textit{Coming to Grips with Cold Weather Operations}, AI/SRA A007-01/00 (Toulouse: Airbus Industrie, 2000). For more recent information on Airbus procedures and qualified products (allowed materials) apply to Airbus for access to Airbus Aircraft Maintenance Manuals (AMM) and Consumable Materials List (CML) or raise a query with Airbus Support Engineering Department.
ground. The protection time can be estimated using holdover time guidelines that are published by the FAA or Transport Canada. Holdover time guidelines are derived from laboratory test or outdoor test. The holdover time guidelines published by the FAA and Transport Canada differ slightly, usually in capping of the values. Both the FAA and Transport Canada holdover time values are derived from a unique set of endurance time data which is updated every year taking into consideration the latest laboratory and outdoor tests. The FAA and Transport Canada are the only organizations publishing holdover times and they do from that single set of data.

Standards. Detailed standards and recommended practices, including specifications for the fluids used for aircraft deicing and anti-icing, testing procedures, qualification processes, endurance time testing, methods for deicing and anti-icing, training and quality control are published by SAE International. These documents are created, maintained and updated by experts gathering under the auspices of the SAE G-12 Aircraft Ground Deicing Committee which works in close cooperation with the regulators. The FAA, Transport Canada, and more recently EASA, fund and perform icing research. The results are presented to the SAE G-12 members.

SAE G-12. The SAE G-12 Aircraft Ground Deicing Committee (SAE G-12) is comprised of 1) the Steering Group, 2) the Aircraft Deicing Fluid Committee (G-12 ADF), 3) the Holdover Time Committee (G-12 HOT)22, 4) the Methods Committee (G-12 M), 5) the Deicing Facility Committee (G-12 DF), 6) the Training and Quality Control Committee (G-12 T), 7) the Future Technology Committee (G-12 FG), 8) the Equipment Committee (G-12 E), 9) the Runway Deicing Fluid Committee23 (G-12 RDF) and 10) various \textit{ad hoc} workgroups reporting to the Committees, such as the Aerodynamics Workgroup (G-12 AWG), the Carbon Brake Oxidation Workgroup, etc. A new Rotorcraft Working Group was added in 2017.

SAE G-12 Meetings. All the committees and workgroups that comprise the SAE G-12 Aircraft Ground Deicing Committee meet every May. Meeting locations change every year. The committees and workgroups often hold more working sessions during the year. Over the last few

22 In 2016, having published all the standards it wished to publish and since activity in the field of ice detection equipment development was minimal, the G-12 Ice Detection Committee decided to become a workgroup that reports to the G-12 Holdover Time Committee until such time that ROGIDS development work becomes active again.

23 The SAE G-12 Runway Deicing Fluid Committee is responsible for not only for runway deicing fluid standards but for runway deicing solids standards as well. Often the expression runway deicing fluid is meant to include products in liquid and solid form. In this document, we use the expression runway deicing products (RDP) to include the solid and liquid forms.
years, several committees have been meeting in late October or early November in Montreal, for the so-called mid-year meeting.

SAE Documents. The documents issued by SAE G-12 fall into four categories: Aerospace Material Specification (AMS), Aerospace Recommended Practice (ARP), Aerospace Information Report (AIR) and Aerospace Standard (AS).

Global Aircraft Deicing Standards. ICAO, national aviation authorities, (e.g., FAA, Transport Canada and EASA), SAE, and airline associations (e.g., AEA) have developed recommended practices for aircraft ground deicing/anti-icing with the intention of providing unified standards. Experience has shown that differences are significant enough to prevent operators from adopting any single one of the many standards published.

The issue of multiple standards became more apparent as centralized deicing facilities (CDF) started operating in many countries. For instance, in Toronto, over 80 airlines fly into a centralized facility, each attempting to impose its own standard for deicing on the staff for its own aircraft. Staff would have had to be trained for each procedure resulting in a multitude of procedures, high training costs and a complexity that added to the risk of non-compliance to the multiple procedures. Many CDF faced with impossible tasks of training its staff to many procedures, imposed their own procedures with the approval of the national regulatory authority. Flightcrews have to learn the difference between each CDF, which adds to complexity of their tasks. Service providers are being audited to different standards.

IATA approached the SAE G-12 in San Francisco in May 2011 and explained that IATA had received a mandate from its Operations Committee (OPC) comprised of the major airline members to develop globally harmonized deicing procedures. Safety and costs would be improved by the adoption of such standards.

SAE G-12 welcomed IATA’s request. IATA and SAE agreed to enter into a formal cooperation agreement. SAE and IATA became sponsors of a newly created Council for Globalized Aircraft

24 The Association of European Airlines (AEA) ceased its operations in December 2016. It is expected that the ex-AEA deicing working group will continue its work under the auspices of the Airlines for Europe (A4E).
Deicing Standards.25 At its first meeting in Montreal, on November 10, 2011, ICAO became a sponsor of the Council and also entered into a formal agreement with SAE.

Necessity for harmonization was stated to be 1) the improvement of safety by reducing the chance of discrepancy between the deicing performed and the deicing expected by the flightcrew as well as simplifying communication, 2) increase in efficiency by reducing the training required by service providers, reducing the costs of airline audits, and simplifying contracts. Areas to be covered by the globalized standards were deicing/anti-icing methods, training and quality assurance.

Rather than attempting to modify the existing SAE documents, it was decided to start from scratch and create new documents, the so-called “global deicing standards”, to replace the existing SAE documents covering 1) deicing/anti-icing processes including flightcrew/ground crew communications, 2) training and 3) quality assurance.

Table 1 lists of the old standards, cancelled or to be cancelled, and corresponding new global deicing standards, all recently issued.

Lexicon. As we move to adopt global standards, it will be important to try to use words with the common understanding and spelling. A lexicon is appended with the aim of standardizing the use of words in the G-12 standards can be found on page 213.

Table 1 Correspondence of Existing SAE Standards and Global Aircraft Deicing Standards

<table>
<thead>
<tr>
<th>Existing SAE Standards</th>
<th>Global Aircraft Deicing Standards</th>
</tr>
</thead>
</table>
ARP6257 Flight and Ground Crew De/Anti-icing Phraseology (issued Oct., 2016) |
| ARP5149B Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground (to be cancelled) | AS6286 Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground
AS6286/1 Processes (issued Nov., 2016)
AS6286/2 Equipment (issued Nov., 2016)
AS6286/3 Fluids (issued Dec., 2016)
AS6286/4 Weather (issued Nov., 2016)
AS6286/5 Health, Safety and First Aid (issued Sept., 2016)
AS6286/6 Aircraft Diagram and No-spray Zones (issued Dec., 2016) |
| ARP5646 Quality Program Guidelines for Deicing/Anti-Icing of Aircraft on the Ground (to be cancelled) | AS6332 Aircraft Ground Deicing/anti-icing Quality Management (issued Aug., 2017) |

Research Reports. APS Aviation has prepared over 100 reports related to aircraft ground deicing for Transport Canada and the FAA. These reports are not indexed in this *Guide to Aircraft Ground Deicing.*

26 Several reports can be found online: Rhea Group <https://www.rheagroup.com/aps-holdover-time-testing/aircraft-ground-icing-research>.
Documentation Notification Services. The FAA and Transport Canada offer free email notification services upon publication of aircraft deicing documentation.

FAA:

Transport Canada: http://wwwapps.tc.gc.ca/Comm/5/ListServ/menu.aspx

Members of SAE G-12 receive notification of SAE standard publications. To become a member, please contact Sonal Khunti at skhunti@sae.org or Jacques Leroux at jleroux@dow.com.

There is no cost to be a member of SAE G-12, to receive committee minutes and review document ballots. People are encouraged to become members of SAE at minimal cost, but this is not required to be a member of SAE G-12.

Vocabulary. There is an effort to standardize the vocabulary in SAE G-12 documents. A lexicon of preferred words and expressions can be found under the heading “List of Preferred Words and Expressions” at p 213.
PART ONE: THE AIRCRAFT DEICING DOCUMENTS

Figure 1 (at p 215) provides a visual representation on how the aircraft deicing documents relate to one another.

Documents Issued by SAE

Documents Issued by the SAE G-12 Aircraft Deicing Fluids Committee

AIR6232 Aircraft Surface Coating Interaction with Aircraft Deicing/Anti-Icing Fluids

Issued 2013-08-12 by SAE G-12 ADF.

Aircraft operators in 2012 expressed interest in the use of after-market coatings on aircraft surfaces for various purposes, including appearance enhancement, fuel savings, and ice shedding. The coatings were designed to have hydrophilic or hydrophobic properties that could possibly interfere with the wetting, thickness, holdover time and aerodynamic properties of aircraft deicing/anti-icing fluid. AIR6232 was issued to raise the issue of the potential deleterious effects of these coatings and propose testing to evaluate the aircraft surface coating compatibility with the deicing anti-icing fluids. AIR6232 also provides descriptions of suggested test methods for evaluating aircraft surface coatings with respect to durability, hardness, weathering, aerodynamic drag, ice adhesion, ice accumulation, contact angle, and thermal conductivity. These tests can provide informational data for characterizing the coatings and may be useful to aircraft operators when evaluating the coatings.

Keywords:
advancing contact angle. See contact angle, advancing
Airbus AIMS 09-00-002, s 5
aircraft coating. See aircraft surface coating
aircraft surface coating – AMS3090 weathering, s 5.1.2
aircraft surface coating – comparative endurance time test, s 3
aircraft surface coating – compatibility with aircraft surfaces, ss 5.1, 5.1.1, 5.1.2
aircraft surface coating – compatibility with cleaners, s 5.1.1
aircraft surface coating – compatibility with polishes, s 5.1.1
aircraft surface coating – compatibility with waxes, s 5.1.1
aircraft surface coating – definition, s 2.2
aircraft surface coating – durability, s 5.1.2
aircraft surface coating – effect on aerodynamic drag, s 5.2
aircraft surface coating – effect on aerodynamic performance, s 4
aircraft surface coating – effect on drag, s 5.2
aircraft surface coating – effect on endurance time, ss 3, 5.7
aircraft surface coating – effect on frost formation, s 5.6
aircraft surface coating – effect on HOT, s 3
aircraft surface coating – effect on ice adhesion, s 5.3
aircraft surface coating – effect on in flight ice accretion, s 5.4.2
aircraft surface coating – effect on thermal conductivity, s 5.8
aircraft surface coating – effect on Type I, Foreword at p 1, s 3
aircraft surface coating – effect on Type II/III/IV, Foreword at p 1
aircraft surface coating – hardness, s 5.1.2
aircraft surface coating – immersion tests, s 5.1.4
aircraft surface coating – thickness 1–2 mils, Rationale at p 1
aircraft surface coating – thickness test for Type II/III/IV, s 3.4
aircraft surface coating – wetting test for Type I, s 3.4
aircraft surface coating, after-market, Foreword at p 1
aircraft surface coating, effect of acid rain on, s 5.1.4
aircraft surface coating, effect of detergents on, s 5.1.4
aircraft surface coating, effect of hydraulic fluid on, s 5.1.4
aircraft surface coating, effect of jet fuel on, s 5.1.4
aircraft surface coating, effect of jet ultraviolet on, s 5.1.4
aircraft surface coating, effect of oxidation on, s 5.1.4
aircraft surface coating, effect of ozone on, s 5.1.4
aircraft surface coating, effect of Type I/II/III/IV on, ss 5.1.3–5.1.4
aircraft surface coating, super-hydrophobic – limitation in frost, s 5.7
aircraft surface coating, Title at p 1
aircraft surface coating, weathering of, s 5.1.2
angle, contact. See contact angle
angle, roll-off. See roll-off angle
angle, sliding. See sliding angle
Boeing D6-17487, s 5
Cassie state. See state, Cassie
coating, aircraft surface. See aircraft surface coating
contact angle – definition, s 2.2
contact angle hysteresis – definition, s 2.2
contact angle, advancing – definition, s 2.2
contact angle, advancing, s 5.5
contact angle, measurement of, s 5.5
contact angle, receding – definition, s 2.2
contact angle, receding, s 5.5
contact angle, ss 1, 5.5
definition – aircraft surface coating, s 2.2
definition – contact angle hysteresis, s 2.2
definition – contact angle, advancing, s 2.2
definition – contact angle, receding, s 2.2
definition – contact angle, s 2.2
definition – endurance time, s 2.2
definition – hydrophilic surface, s 2.2
definition – hydrophobic surface, s 2.2
definition – icephobic surface, s 2.2
definition – roll-off angle, s 2.2
definition – sliding angle, s 2.2
definition – state, Cassie, s 2.2
definition – state, Wenzel, s 2.2
definition – super-hydrophobic surface, s 2.2
definition – surface, treated, s 2.2
drop impact resistance, s 5.6
endurance time – definition, s 2.2
frost endurance test, s 5.7
frost formation, s 5.6
frost growth, s 5.7
frost nucleation, s 5.7
fuel savings, Foreword at p 1
hydrophilic surface – definition, s 2.2.
hydrophobic surface – definition, s 2.2
hydrophobic surface – icephobic properties, does not imply, s 5.7
ice accretion – water droplet impact resistance, s 5.6
ice accretion, in-flight, s 5.4
ice accumulation test, static, s 5.4
ice adhesion test – centrifuge ice adhesion test, s 5.3
ice adhesion test – zero degree cone test, s 5.3
ice shedding, Foreword at p 1, s 5.4.1
ice, impact. See ice accretion, in-flight
icephobic surface – definition, s 2.2
impact ice. See ice accretion, in-flight
paint sealants, Rationale at p 1
paint protectants, Rationale at p 1
receding contact angle. See contact angle, receding
roll-off angle – definition, s 2.2
roll-off angle, s 5.5
sliding angle – definition, s 2.2
state, Cassie – definition, s 2.2
state, Cassie to Wenzel, s 5.7
state, Cassie, s 5.6
state, non-wetting, s 5.6
state, Wenzel – definition, s 2.2
state, Wenzel, s 5.6
state, wetting, s 5.6
sublimation (vapor phase to solid phase), s 5.7
super-hydrophobic surface – definition, s 2.2,
surface, hydrophilic. See hydrophilic surface
surface, hydrophobic. See hydrophobic surface
surface, icephobic. See icephobic surface
surface, super-hydrophobic. See super-hydrophobic surface
surface, treated – definition, s 2.2
surface, untreated – definition, s 2.2
thermal conductivity, s 5.8
Type I wetting test, s 3.4
Type I wetting v time test, s 3.4
Type II/III/IV thickness v time test, s 3.4
Wenzel state. See state, Wenzel
wettability, quantification of, s 2.2
wettability. See also contact angle
wettability. See also state, Wenzel
wetting – water droplet impact resistance, s 5.6
wetting test, Type I, s 3.4
ARP6852B Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids

Revised 2017-01-03 by SAE G-12 AWG and SAE G-12 ADF.

AMS1424 and AMS1428 require aircraft deicing/anti-icing fluids to comply to the aerodynamic acceptance test whose purpose is to ensure that the aerodynamic performance of all fluids are no worse than an established accepted standard; this aerodynamic acceptance test is described in detail in AS5900C. Even with successful aerodynamic acceptance qualification, there can be circumstances which require the evaluation of the aerodynamic effect of fluids on specific aircraft. ARP6852B does provide guidance for such aircraft specific evaluation.

ARP6852B, prepared by the members of the G-12 Aerodynamics Working Group, describes methods known to have been used by aircraft manufacturers to evaluate specific aircraft aerodynamic performance and handling effects following application of glycol based SAE AMS Type I, II, III or IV aircraft deicing/anti-icing fluids. Guidance and insight based upon those experiences are provided, including, similarity analyses, icing wind tunnel tests, flight tests, computational fluid dynamics and other numerical analyses.

ARP6852B further presents an historical account of the evaluation of the aerodynamic effects of fluids, including the initial work done by Boeing in the 1980s and 1990s on high speed aircraft and of de Havilland on commuter type aircraft which led to the development of the aerodynamic acceptance test described in AS5900C. ARP6852B provides an extensive bibliography on the effects of fluids on aircraft aerodynamics and reports on the methods used by Bombardier, Cessna and SAAB to evaluate the effects of fluid on their respective aircraft.

Keywords:
aerodynamic acceptance test – Boeing history, s 3.4, Appendix A
aerodynamic acceptance test – Bombardier (de Havilland) history, Appendix B
aerodynamic acceptance test – development by Boeing, s 3.4, Appendix A
aerodynamic acceptance test – development by de Havilland, Appendix B
aerodynamic acceptance test – general description, s 3.3.2
aerodynamic acceptance test – high and low speed ramp on Type I and Type III, s 3.3.2
aerodynamic acceptance test – high speed ramp – description, s 3.3.2
aerodynamic acceptance test – high speed ramp on Type II and Type IV, s 3.3.2
aerodynamic acceptance test – low speed ramp – description, s 3.3.2
aerodynamic acceptance test – maximum acceptable lift loss for commuter type aircraft with wing mounted propellers (8%), s 3.2.2
aerodynamic acceptance test – maximum acceptable lift loss for large transport jet aircraft (5.24%), s 3.2.2
aerodynamic acceptance test – V2 at least 1.10VS1g, s 3.3.2
aerodynamic acceptance test (AS5900C) subset of aerodynamic effect of fluids, Foreword at p 1
aerodynamic clean surface, description of, s 3.2
aerodynamic effect of fluids – bibliography, s 2.1.2
aerodynamic effect of fluids – compensating measures. See aerodynamic effect of fluids – performance adjustments
aerodynamic effect of fluids – critical point at maximum angle of attack, s 3.2.1
aerodynamic effect of fluids – critical point during takeoff, s 3.2.1
aerodynamic effect of fluids – decrease of during ground roll, rotation and climb, s 3.2
aerodynamic effect of fluids – effect of angle of attack, s 3.2.1
aerodynamic effect of fluids – effect of fuselage geometry, s 3.2.
aerodynamic effect of fluids – effect of geometry-limited aircraft, s 3.2.1
aerodynamic effect of fluids – effect of high lift configuration, s 3.2.1
aerodynamic effect of fluids – effect of initial climb speed, s 3.2.1
aerodynamic effect of fluids – effect of leading-edge stall v trailing-edge stall, s 3.2.1
aerodynamic effect of fluids – effect of OAT on fluid flow-off, s 3.2.1
aerodynamic effect of fluids – effect of OAT on fluid viscosity, s 3.2.1
aerodynamic effect of fluids – effect of rotation speed, s 3.2.1
aerodynamic effect of fluids – effect of speed and time to accelerate to rotation speed, s 3.2.1
aerodynamic effect of fluids – effect of time to accelerate to climb speed, s 3.2.1
aerodynamic effect of fluids – effect of wing stall characteristics, s 3.2.1
aerodynamic effect of fluids – evaluation by Bombardier, Appendix E
aerodynamic effect of fluids – evaluation by Cessna, Appendix D
aerodynamic effect of fluids – evaluation by de Havilland, Appendix B
aerodynamic effect of fluids – evaluation by SAAB, Appendix C
aerodynamic effect of fluids – evaluation methods – computational fluid dynamics and other numerical analyses, s 4.5, 6.1
aerodynamic effect of fluids – evaluation methods – flight tests, ss 4.4, 6.1
aerodynamic effect of fluids – evaluation methods – methodologies pros and cons, s 6.1, Table 1 at p 27
aerodynamic effect of fluids – evaluation methods – process flow chart, s 4.1
aerodynamic effect of fluids – evaluation methods – similarity analysis, ss 4.2, 6.1
aerodynamic effect of fluids – evaluation methods – wind tunnel tests, ss 4.3, 6.1
aerodynamic effect of fluids – evaluation methods, s 4
aerodynamic effect of fluids – fluid presence at time of rotation, s 3.2.1
aerodynamic effect of fluids – on aircraft aerodynamic performance, s 3.2.1
aerodynamic effect of fluids – on CLmax, s 3.2.1
aerodynamic effect of fluids – on drag, s 3.2.1
aerodynamic effect of fluids – on elevator control force, s 3.2.2
aerodynamic effect of fluids – on elevator effectiveness, s 3.2.2
aerodynamic effect of fluids – on handling qualities, ss 3.2.2, 6.3
aerodynamic effect of fluids – on hinge moment, s 3.2.2
aerodynamic effect of fluids – on lateral control, ss 3.2.2, 6.3
aerodynamic effect of fluids – on lift decrease, s 3.2.1
aerodynamic effect of fluids – on Mitsubishi YS-11, s 3.2.2
aerodynamic effect of fluids – on stick/column forces, s 3.2.2
aerodynamic effect of fluids – on tab effectiveness, s 3.2.2
aerodynamic effect of fluids – performance adjustments – attitude, s 5
aerodynamic effect of fluids – performance adjustments – braking energy, s 5
aerodynamic effect of fluids – performance adjustments – pitch rate, s 5
aerodynamic effect of fluids – performance adjustments – takeoff flap settings, s 6.3
aerodynamic effect of fluids – performance adjustments – takeoff distance, s 5
aerodynamic effect of fluids – performance adjustments – takeoff speeds, ss 5, 6.3
aerodynamic effect of fluids – performance adjustments – takeoff weight, s 5
aerodynamic effect of fluids – performance adjustments – takeoff technique, s 5
aerodynamic effect of fluids – performance adjustments to ensure adequate safety margins, s 5
aerodynamic effect of fluids – performance adjustments, ss 3.3.2, 5
aerodynamic effect of fluids – performance adjustments. See also Type II/III/IV aircraft operational considerations
aerodynamic effect of fluids – rotation difficulties on aircraft with unpowered pitch control surfaces, ss 3.2.2, 6.3
aerodynamic effect of fluids – transient27 nature of, ss 3.2, 3.2.1, 4.4.3.2.2
aerodynamic effect of fluids – wave roughness introduced by flow-off, s 3.2
aerodynamic effect of fluids on specific aircraft [AS6852B] subset of aerodynamic effect of fluids, Foreword at p 1
aerodynamic effect of fluids on specific aircraft, s 3.4
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – additional requirements beyond AAT, s 3.4
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – different from Boeing 737-200ADV, s 3.4
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – report of high stick forces during rotation, s 3.4
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – report of high wheel forces during rotation, s 3.4
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – rotation speed different from AAT, s 3.4
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – takeoff acceleration different from AAT, s 3.4
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – takeoff speed corrections to compensate for lift loss caused by fluids, s 3.4
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – variation in wing design, s 3.4
aerodynamic effect of fluids superset of aerodynamic acceptance test [AS5900C], Foreword at p 1
aerodynamic effect of fluids superset of aerodynamic effect of fluids on specific aircraft [AS6852B], Foreword at p 1
aerodynamic effect on specific aircraft – Boeing 737-200ADV, ss 3.2.1, 3.4, Appendix A
Boeing – aerodynamic acceptance test history, ss 3.2.1, 3.2.4, Appendix A
Boeing B737-200 ADV – aerodynamic acceptance test, ss 3.2.1, 3.4, Appendix A
Bombardier (de Havilland) – aerodynamic acceptance test history, Appendix B
Bombardier DHC-8, Appendix B
Bombardier. See also aerodynamic effect of fluids – evaluation by Bombardier
Cessna. See also aerodynamic effect of fluids – evaluation by Cessna
de Havilland DHC-8, Appendix B
de Havilland. See also aerodynamic effect of fluids – evaluation by de Havilland
definition – fluid, qualified, s 2.2
definition – fluid, thickened, s 2.2
definition – HOT, s 2.2
definition – LOUT, s 2.2
fluid flow-off – speed and time dependence, s 3.2.1
fluid flow-off at rotation – incomplete, s 3.2
fluid manufacturer documentation – aerodynamic acceptance data, s 4.4.2
fluid, qualified – definition, s 1
fluid, thickened – definition, s 2.2
HOT – definition, s 2.2
Kuopio Finland tests, Appendix A

27 AS6852B appears to use the words “transient” and “transitory” as synonyms when referring to the aerodynamic effects of fluid as in “[t]he aerodynamic effects of fluids are transitory…” (par 3 at p 10) or “[c]urrent data suggests that the fluid transient behavior…” (par 5 at p 11). Here we index under “transient”.

36
leading edge thermal anti-icing system – dehydration of Type II/III/IV, s 3.2
leading edge, heated, s 3.2
LOUT – definition, s 2.2
Mitsubishi YS-11, s 3.2.2
performance adjustments, aircraft. See aerodynamic effect of fluids – performance adjustments
ramp, high speed. See aerodynamic acceptance test – high speed ramp
ramp, low speed. See aerodynamic acceptance test – low speed ramp
roughness, wave, ss 3.2, 3.2.1
SAAB. See also aerodynamic effect of fluids – evaluation by SAAB
surface, clean – description of, s 3.2
Type I – functional description, s 3.1
Type II/III/IV – functional description, s 3.1
von Karman Institute for Fluid Dynamics, Appendix A–C
wave roughness, ss 3.2, 3.2.1
wing stall characteristics, s 3.2.1

AS5900C Standard Test Method for Aerodynamic Acceptance of AMS1424 and AMS1428 Aircraft Deicing/Anti-icing Fluids

Revised 2016-10-25 by SAE G-12 ADF.

This standard provides test methods to ensure acceptable aerodynamic characteristics of the deicing/anti-icing fluids as they flow off aircraft lifting and control surfaces during the takeoff ground acceleration and climb. AS5900C establishes the aerodynamic flow-off requirements for SAE AMS1424 Type I and SAE AMS1428 Type II, III and IV fluids used to deice and/or anti-ice aircraft.

Two tests are defined. One to simulate the takeoff of large transport jet aircraft28 with speeds29 at rotation exceeding approximately 100 knots and with time30 from brake release to rotation greater than 20 s. This takeoff is simulated using a “high speed ramp” where the test is performed as 65 m/s (126 knots) and a 25 s acceleration at 2.5 m/s².

The other test simulates the takeoff of commuter turbo-prop aircraft31 with speeds at rotation between 60 and 100 knots and with a time from brake release to rotation between 15 and 20 s. The takeoff is simulated using a “low speed ramp” where the test is performed at 35 m/s (70 knots) and a 17 s acceleration at 2.1 m/s².

28 Large jet transport aircraft are also known as high speed aircraft.
29 Takeoff rotation speed or rotation speed are also known as VR.
30 Time from brake release to rotation is also known as takeoff run time or ground acceleration time or brake release to VR.
31 Commuter turbo-prop aircraft are colloquially known as low speed aircraft.
Keywords:

aerodynamic acceptance test – BLDT – Bernoulli equation, s 6.4.2.2
aerodynamic acceptance test – BLDT – calculation, s 6.4.2.2
aerodynamic acceptance test – BLDT, dry – at 35 m/s – 3.3 mm, 4 2.4.2
aerodynamic acceptance test – BLDT, dry – at 65 m/s – 3.0 mm, s 4.2.4.1
aerodynamic acceptance test – BLDT, ss 1, 6.2.7.4
aerodynamic acceptance test – calibration requirements, s 4.1
aerodynamic acceptance test – commuter aircraft, s 3.1b
aerodynamic acceptance test – continued acceptance, s 7.4
aerodynamic acceptance test – description of test, s 3.1
aerodynamic acceptance test – facility/site competency, s 3.3
aerodynamic acceptance test – facility/site independence from fluid manufacturer, s 3.3
aerodynamic acceptance test – fluid elimination – Type II/III/IV high speed ramp – 74%, s 6.2.10.2
aerodynamic acceptance test – fluid elimination – Type II/III/IV low speed ramp – 57%, s 6.2.10.2
aerodynamic acceptance test – fluid formulation change, s 7.4
aerodynamic acceptance test – fluid from licensee, s 7.4
aerodynamic acceptance test – fluid property change, s 7.4
aerodynamic acceptance test – fluid residual thickness – Type I high speed ramp – 600 microns, s 6.2.10.1
aerodynamic acceptance test – fluid residual thickness – Type I low speed ramp – 400 microns, s 6.2.10.1
aerodynamic acceptance test – high speed ramp – 2.6 m/s², ss 3.1a, 4.3.4.1.1
aerodynamic acceptance test – high speed ramp – 25 s, ss 3.1a, 4.3.4.1.1
aerodynamic acceptance test – high speed ramp – 65 m/s, ss 3.1a, 4.3.4.1.1, 6.2.7.3a
aerodynamic acceptance test – high speed ramp – acceleration, s 6.2.7.2a
aerodynamic acceptance test – high speed ramp – compensating measures for turbo prop aircraft, s 3.1b
aerodynamic acceptance test – high speed ramp – elimination ≥ 74%, s 6.2.10.2
aerodynamic acceptance test – high speed ramp – reference fluid, s 3.2.1
aerodynamic acceptance test – high speed ramp – speed diagram, Figure 1
aerodynamic acceptance test – high speed ramp, ss 3.1a, 4.3.4.1.1
aerodynamic acceptance test – initial testing, s 7.3.1
aerodynamic acceptance test – large transport jet aircraft, s 3.1a
aerodynamic acceptance test – licensee fluid, s 7.4
aerodynamic acceptance test – low speed ramp – 17 s, ss 3.1b, 4.3.4.1.2
aerodynamic acceptance test – low speed ramp – 2.1 m/s², ss 3.1b, 4.3.4.1.2
aerodynamic acceptance test – low speed ramp – 35 m/s, ss 3.1b, 4.3.4.1.2, 6.2.7.3b
aerodynamic acceptance test – low speed ramp – acceleration, s 6.2.7.2b
aerodynamic acceptance test – low speed ramp – elimination ≥ 57%, s 6.2.10.2
aerodynamic acceptance test – low speed ramp – reference fluid, s 3.2.2
aerodynamic acceptance test – low speed ramp – speed diagram, Figure 2
aerodynamic acceptance test – low speed ramp, ss 3.1b, 4.3.1.1.2
aerodynamic acceptance test – non-glycol based fluid, s 1
aerodynamic acceptance test – procedure, s 6
aerodynamic acceptance test – report, s 9
aerodynamic acceptance test – retesting, s 7.3.2
aerodynamic acceptance test – site qualification, s 3.3
aerodynamic acceptance test – test duct frost, ss 6.3.2, 6.3.4.1
aerodynamic acceptance test – test facility independence, s 3.3

32 The expressions “test facility”, “facility”, “site/facility” “aerodynamic acceptance test facility” appear to be used interchangeably (ss 3.3, 4, 4.5). Section 3.3 defines qualification of the facility, associated staff and resources as technical suitability and competency.

33 There is no elimination set for Type I fluids but there is a maximum “fluid residual thickness” set for the high speed ramp and the low speed ramp.
Aircraft Deicing Documents – Issued by the G-12 Aircraft Deicing Fluid Committee

aerodynamic acceptance test – test facility qualification frequency – 5 years, s 3.3
aerodynamic acceptance test – test facility qualification, s 3.3
aerodynamic acceptance test – test facility requirements, s 3.3, 4
aerodynamic acceptance test – test fluid age < 3 months, s 5.1
aerodynamic acceptance test – test fluid final thickness, s 6.2.10
aerodynamic acceptance test – test fluid HHET, s 5.1
aerodynamic acceptance test – test fluid pH, s 5.2.4
aerodynamic acceptance test – test fluid pre-cooling, s 6.2.2
aerodynamic acceptance test – test fluid quantity per run – 1 liter, s 5.1
aerodynamic acceptance test – test fluid refractive index, ss 5.2.3, 6.2.4, 6.2.9, 6.3.3
aerodynamic acceptance test – test fluid requirements, s 5
aerodynamic acceptance test – test fluid settling period of 5 minutes, s 6.2.6
aerodynamic acceptance test – test fluid surface tension, s 5.2.2
aerodynamic acceptance test – test fluid thickness 2 mm, s 6.2.5
aerodynamic acceptance test – test fluid unsheared, s 5.1
aerodynamic acceptance test – test fluid viscosity, s 5.2.1
aerodynamic acceptance test – test fluid WSET (unsheared), s 5.1
aerodynamic acceptance test – test fluid, dilution of, ss 5.1, 6.1
aerodynamic acceptance test – test fluid, experimental, s 5.1
aerodynamic acceptance test – test fluid, production, s 5.1
aerodynamic acceptance test – test gas, s 4.3.1
aerodynamic acceptance test – test method, Title at p 1
aerodynamic acceptance test – test results, s 9
aerodynamic acceptance test – third party reviewer, ss 3.3, 9
aerodynamic acceptance test – Type I, ss 1, 3.1
aerodynamic acceptance test – Type II/III/IV, ss 1, 3.1
aerodynamic acceptance test, Title at p 1
aerodynamic flow-off characteristics, acceptability of, s 1
BLDT. See aerodynamic acceptance test – BLDT
fluid elimination – Type II/III/IV high speed ramp, s 6.2.10.2
fluid elimination – Type II/III/IV low speed ramp, s 6.2.10.2
high speed ramp. See aerodynamic acceptance test – high speed ramp
low speed ramp. See aerodynamic acceptance test – low speed ramp

AS5901C Water Spray and High Humidity Endurance Test Methods for SAE AMS1424 and SAE AMS1428 Aircraft Deicing/Anti-icing Fluids

Revised 2014-06-24 by SAE G-12 ADF.

The purpose of this standard is to determine the anti-icing endurance, under controlled laboratory conditions, of AMS1424 Type I and AMS1428 Type II, III, and IV fluids. AS5901C establishes a) the minimum requirements for an environmental test chamber and b) the test procedures to carry out anti-icing performance tests according to the current specification for aircraft deicing/anti-icing fluids.

Keywords:
anti-icing performance – HHET and WSET, s 3
edge effect. See WSET – failure zone; HHET – failure zone
HHET – air temperature (0.0°C), s 5.4.1, Table 1 at p 7
HHET – air velocity, horizontal, s 5.4.1, Table at p 7
HHET – calibration, s 5
HHET – description, s 3.3
HHET – failure criteria, s 3.3
HHET – failure zone, s 3.3, Figure 1 at p 10
HHET – fluid preparation, s 6.3
HHET – fluid sheared, s 6.3
HHET – fluid temperature (ambient, 15–25°C), s 6.3
HHET – humidity generator, s 4.2.2.1
HHET – relative humidity (>80%), s 5.4.1, Table 1 at p 7
HHET – report, s 6.6
HHET – reproducibility – Type I (20%), s 6.5
HHET – reproducibility – Type II/III/IV (10%), s 6.5
HHET – spray equipment, s 4
HHET – test chamber, s 4
HHET – test description, ss 3.3, 6.4
HHET – test method, ss 3.3, 6.4
HHET – test plate cleanliness, s 6.1
HHET – test plate temperature (-5.0°C), s 5.4.1, Table 1 at p 7
HHET – test plate, s 4.3
HHET – water droplet size, s 5.2.2
HHET – air temperature (0.0°C), s 5.4.1, Table 1 at p 7
water droplet size – laser diffraction method, s 5.3.2
water droplet size – slide impact method with oil, s 5.3.1
WSET – air temperature (-5.0°C), s 5.4.1, Table 1 at p 7
WSET – calibration, s 5
WSET – description, ss 3.2, 6.4
WSET – failure criterion, s 3.2
WSET – failure zone, s 3.2, Figure 1 at p 7
WSET – fluid preparation, s 6.3
WSET – fluid sheared, s 6.3
WSET – fluid temperature (ambient, 15–25°C), s 6.3
WSET – fluid temperature, s 6.3
WSET – report, s 6.6
WSET – reproducibility – Type I (20%), s 6.5
WSET – reproducibility – Type II/III/IV (10%), s 6.5
WSET – reproducibility, s 6.5
WSET – spray equipment s 4.2.1
WSET – test chamber, s 4.2
WSET – test description, ss 3.2, 6.4
WSET – test plate cleanliness, s 6.1
WSET – test plate temperature (-5.0°C), s 5.4.1, Table 1 at p 7
WSET – test plate, s 4.3
WSET – water droplet size, s 5.2.1, Table 1 at p 7
AMS1424N Fluid, Aircraft Deicing/Anti-Icing, SAE Type I

Revised 2017-06-09 by SAE G-12 ADF.

AMS1424N34 sets the technical and environmental requirements and quality assurance provisions for aircraft deicing fluids (SAE Type I) that are used to remove frozen deposits from exterior surfaces of aircraft prior to takeoff. SAE Type I fluids do not contain thickeners.

AMS1424N is defined as the foundation specification for SAE Type I fluids. The SAE Type I fluids are divided into two categories: a) SAE Type I fluids based on Glycol freezing point depressants, which include Conventional Glycols and Non-conventional Glycols and b) SAE Type I fluids based on Non-glycol freezing point depressants.

SAE Type I fluids based on Conventional and Non-conventional Glycol freezing point depressants are defined and identified as AMS1424/1 (read AMS1424 slash one) Type I fluids. The purpose of the AMS1424/1 specification, which is called a category specification, is to identify the SAE Type I fluid as a glycol (conventional or non-conventional) based fluid.

Conventional Glycols are defined as ethylene glycol, diethylene glycol and propylene glycol.

Non-conventional Glycols are defined as organic non-ionic diols and triols, e.g., 1,3-propanediol, glycerine and mixtures thereof and mixtures with conventional glycols.

SAE Type I fluids based on Non-glycol freezing point depressants are defined and identified as AMS1424/2 (read AMS1424 slash two) Type I fluids. The purpose of the AMS1424/2 specification, which is called a category specification, is to identify the SAE Type I fluid as a Non-glycol based fluid.

34 *Type I – compatibility with Type II/III/IV.* When a Type II, III or IV fluid conforming to AMS1428 is used to perform step two in a two-step deicing/anti-icing operation, and the fluid used in step one is often a Type I fluid conforming to AMS1424, section 1.3.6 of AMS1424N explains that users must ensure that the Type I be compatible with the Type II/III/IV. A means of verification is suggested in section 6.3.3.2 of ARP4737H requiring a test be made to confirm that the combination of these fluids does not significantly reduce the WSET performance of the AMS1428 fluid. For some unexplained reason, AS6285 omits to provide the information provided in 6.3.3.2 of ARP4737H. FAA Notice N 8900.431 at s 13.d.(2) tells operators to make sure the Type I and Type IV are compatible by contacting the respective fluid manufacturers.
Guide to Aircraft Ground Deicing – Issue 6

Non-glycol is defined as all that is not Glycol (Conventional and Non-conventional), such as organic salts, e.g., sodium formate, sodium acetate, potassium formate, potassium acetate and any mixtures thereof.

Mixtures of any Glycol with Non-glycol are defined as Non-glycol.

In summary, there is one foundation specification for Type I fluid, AMS1424N, and two category specifications AMS1424/1 and AMS1424/2.

Keywords:
1,3-propanediol. See Glycol, Non-conventional – 1,3-propanediol
alkali metal salts. See also Non-glycol
AMS1424 – performance v composition of matter specification, s 3.1
AMS1424/1, ss 1.1, 1.3.6, 5.1.3
AMS1424/2, ss 1.1, 1.3.6, 5.1.3
Brix, s 3.2.4
color uniformity, s 3.1.4
color, Type I – orange, s 3.1.4.1
colorless. See also Type I – colorless
compatibility, fluid. See fluid compatibility – Type I with Type II/III/IV
Conventional Glycol. See Glycol, Conventional
definition – Glycol, Conventional and Non-conventional, s 3.1.1
definition – Glycol, Conventional, s 3.1.1.1
definition – Glycol, Non-, s 3.1.1.3
definition – Glycol, Non-conventional, s 3.1.1.2
definition – Glycol, s 3.1.1.1
definition – lot, Type I, s 4.3
definition – LOUT, Type I, s 1.2.2.1
definition – Non-glycol, s 3.1.1.2
diethylene glycol. See also Glycol, Conventional – diethylene glycol
ethylene glycol. See also Glycol, Conventional – ethylene glycol; EG v PG
fluid application, two-step – Type I compatibility with Type II/III/IV, s 1.3.6, see footnote 34
fluid compatibility – Type I with Type II/III/IV, s 1.3.6, see footnote 34
fluid manufacturer documentation – aerodynamic acceptance data, ss 1.3.2, 3.5.3
fluid manufacturer documentation – appearance, s 3.1.4
fluid manufacturer documentation – aquatic toxicity, s 3.1.5.4, Appendix A
fluid manufacturer documentation – biodegradability, s 3.1.5.3
fluid manufacturer documentation – BOD, s 3.1.5.1
fluid manufacturer documentation – COD, s 3.1.5.2
fluid manufacturer documentation – color, s 3.1.4.1
fluid manufacturer documentation – flash point, s 3.2.1
fluid manufacturer documentation – fluid stability, s 3.3
fluid manufacturer documentation – freezing point v dilutions, s 1.2.2.1
fluid manufacturer documentation – freezing point, s 3.2.5
fluid manufacturer documentation – glycol, presence of recycled, s 4.4.2.1
fluid manufacturer documentation – hard water stability, s 3.3.3
fluid manufacturer documentation – HHET, s 3.5.2

35 Section 1.2.2.1 refers to ARP4737, it should refer to AS6285.
fluid manufacturer documentation – LOUT for intended dilutions, s 1.2.2
fluid manufacturer documentation – LOUT, s 1.2.2
fluid manufacturer documentation – materials compatibility, 3.4
fluid manufacturer documentation – pH limits, s 3.2.3
fluid manufacturer documentation – recycled glycol, presence of, s 4.4.2.1
fluid manufacturer documentation – refractive index limits, s 3.2.4
fluid manufacturer documentation – safety data sheet, ss 1.3.1, 4.5.2
fluid manufacturer documentation – shear stability, s 3.3.4
fluid manufacturer documentation – specific gravity, s 3.2.2
fluid manufacturer documentation – storage stability, s 3.3.1
fluid manufacturer documentation – surface tension, s 3.2.6
fluid manufacturer documentation – tendency to foam, s 3.3.5
fluid manufacturer documentation – thermal stability, s 3.3.2
fluid manufacturer documentation – trace contaminants, s 3.1.6
fluid manufacturer documentation – viscosity limits, s 3.2.7
fluid manufacturer documentation – WSET, s 3.5.2
freezing point depressant, Glycol, Conventional and Non-Conventional, s 3.1.1
freezing point depressant, Glycol, Conventional, ss 3.1.1, 3.1.1.1
freezing point depressant, Glycol, Non-conventional, ss 3.1.1, 3.1.1.2
freezing point depressant, Non-glycol, ss 3.1.1, 3.1.1.3, 3.1.3
glycerine. See Glycol, Non-conventional – glycerine
Glycol – definition, s 3.1.1.1
Glycol, Conventional – definition, s 3.1.1.1
Glycol, Conventional – diethylene glycol, s 3.1.1.1
Glycol, Conventional – ethylene glycol, s 3.1.1.1
Glycol, Conventional – propylene glycol, s 3.1.1.1
Glycol, Conventional and Non-conventional – definition, s 3.1.1
glycol, Non-. See Non-glycol
Glycol, Non-conventional – 1,3-propanediol, s 3.1.1.2
Glycol, Non-conventional – definition, s 3.1.1.2
Glycol, Non-conventional – glycerine, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures of, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures with Conventional Glycol, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, s 3.1.1.2
glycol, recycled. See Type I – recycled glycol
HHET, Type I – 20 minutes minimum, s 3.5.2
lot, Type I – definition, s 4.3
Non-conventional Glycol. See Glycol, Non-conventional
Non-glycol – definition, s 3.1.1.3
Non-glycol – organic salts mixtures with Glycol, s 3.1.1.3
Non-glycol – organic salts, mixtures of, s 3.1.1.3
Non-glycol – potassium acetate, s 3.1.1.3
Non-glycol – potassium formate, s 3.1.1.3
Non-glycol – sodium acetate, s 3.1.1.3
Non-glycol – sodium formate, s 3.1.1.3
propylene glycol. See also Glycol, Conventional – propylene glycol; EG v PG
recycled glycol. See Type I – recycled glycol
specification, category, ss 1.1, 1.1.1
specification, foundation, ss 1.1, 1.1.1
Type I – acrylic plastics, effect on, s 3.4.6
Type I – aerodynamic acceptance – 50/5036, ss 3.5.3, 3.5.3.2
Type I – aerodynamic acceptance – concentrate form, ss 1.3.2, 3.5.3.2
Type I – aerodynamic acceptance – concentrations to test, ss 3.5.3, 3.5.3.2
Type I – aerodynamic acceptance – fluid elimination37, s 3.5.3.1
Type I – aerodynamic acceptance – fluid thickness, final, s 3.5.3.1
Type I – aerodynamic acceptance – fluid thickness, initial, s 3.5.3.1
Type I – aerodynamic acceptance – high speed ramp, s 3.5.3
Type I – aerodynamic acceptance – highest concentration, ss 3.5.3, 3.5.3.2
Type I – aerodynamic acceptance – low speed ramp, s 3.5.3
Type I – aerodynamic acceptance – ready-to-use, ss 3.5.3, 3.5.3.2
Type I – aging, accelerated, s 3.3.2
Type I – aircraft manufacturer maintenance manual, s 1.2.1
Type I – aircraft manufacturer service letters, s 1.2.1
Type I – aircraft type and model restrictions, s 1.2.1
Type I – anti-icing performance – HHET, s 3.5.2
Type I – anti-icing performance – sample sheared, s 3.5.2
Type I – anti-icing performance – WSET, s 3.5.2
Type I – appearance, s 3.1.4
Type I – approval by purchaser, s 4.4.1
Type I – aquatic toxicity, s 3.1.5.4
Type I – biodegradability, s 3.1.5.3
Type I – BOD, s 3.1.5.1
Type I – Brix, s 3.2.4
Type I – cadmium as contaminant, s 3.1.6
Type I – carbon brake compatibility, s 1.3.8
Type I – certificate of analysis, s 4.2.1
Type I – chromium as contaminant, s 3.1.6
Type I – COD, s 3.1.5.2
Type I – color uniformity, s 3.1.4
Type I – color, orange, s 3.1.4.1
Type I – colorless – mitigating procedures, s 3.1.4.1
Type I – colorless – risk assessment, s 3.1.4.1
Type I – colorless – special training, s 3.1.4.1
Type I – commingling, s 1.3.6
Type I – compatibility with Type II/III/IV, s 1.3.6, see footnote 34
Type I – composition – fire hazard inhibitor, ss 1.3.4, 3.1
Type I – composition – thickeners, free from, s 3.1
Type I – composition, s 3.1
Type I – concentrate to be diluted, s 1.3.2
Type I – consistency, s 4.5.1
Type I – containers, ss 5.1.1, 5.1.3, 5.1.5, 8.4
Type I – contaminants – other fluids, s 1.3.6
Type I – contaminants, trace, s 3.1.6
Type I – corrosion – recycled glycol, caused by, s 4.4.2.1
Type I – corrosion, low embrittling cadmium plate, s 3.4.3
Type I – corrosion, sandwich, s 3.4.1

36 Dilutions of concentrate SAE Type I aircraft deicing fluid are normally given by volume, the first number being the volume percent of the concentrate fluid and the second number the volume of water. For example a 70/30 mixture would be 70 parts by volume of the concentrate SAE Type I fluid mixed with 30 parts by volume of water.

37 AMS1424N refers to initial thickness and final thickness of the fluid in the aerodynamic acceptance test. AMS1428J refers to fluid elimination. The notions are related in that they attempt to quantify the quantity of fluid that is eliminated during the acceleration run.
Type I – corrosion, stress-, s 3.4.4
Type I – crawling, s 1.3.7
Type I – drums, ss 5.1.2, 5.1.5, 8.4
Type I – effect on aircraft materials, s 3.4
Type I – environmental information, s 3.1.5
Type I – exposure, human, s 1.3.1
Type I – field test with deicing unit, s 1.3.7
Type I – film breaks, s 1.3.7
Type I – fire hazard – circuit breakers, s 1.3.4
Type I – fire hazard – direct current, s 1.3.4
Type I – fire hazard – glycol, ss 1.3.4, 3.1
Type I – fire hazard – inhibitor, ss 1.3.4, 3.1
Type I – fire hazard – noble metal coated wiring, ss 1.3.4, 3.1
Type I – fire hazard – silver coated wiring, ss 1.3.4, 3.1
Type I – fire hazard – switches, electrical, s 1.3.4
Type I – fisheyes, s 1.3.7
Type I – flash point, minimum, ss 1.3.3, 3.2.1
Type I – flash point, ss 1.3.3, 3.2.1
Type I – fluid manufacturer to report – all technical requirement results, s 4.5
Type I – fluid manufacturer to report – recycled glycol, presence of, ss 4.4.2.1
Type I – fluid manufacturer to report – recycled glycol, source of, ss 4.4.2.1
Type I – foam, tendency to, s 3.3.5
Type I – foreign matter, free from, s 3.1.4
Type I – freezing point buffer, s 1.2.2.1
Type I – freezing point curve, s 3.5.1
Type I – freezing point depressant, non-glycol, s 3.1.1
Type I – freezing point of 50/50 dilution, ss 3.2.5, 3.5.1
Type I – freezing point of concentrate form, s 3.2.5
Type I – freezing point of ready-to-use form, s 3.5.1.1
Type I – halogens as contaminant, s 3.1.6
Type I – hard water stability, s 3.3.3
Type I – HHET – sample sheared, s 3.5.2
Type I – HHET, s 3.5.2
Type I – hydrogen embrittlement, s 3.4.5
Type I – label – AMS1424/1 or AMS142/2, s 5.1.3
Type I – label – lot number, s 5.1.3
Type I – label – manufacturer’s identification, s 5.1.3
Type I – label – purchase order number, s 5.1.3
Type I – label – quantity, s 5.1.3
Type I – lead as contaminant, s 3.1.6
Type I – lot acceptance tests, ss 4.2.1, 4.3.3
Type I – lot number, s 4.1
Type I – lot rejection, s 4.6
Type I – LOUT – definition, s 1.2.2.1
Type I – LOUT of dilutions, s 1.2.2
Type I – LOUT reporting requirement, s 1.2.2
Type I – LOUT, manufacturer obligation to report, s 1.2.2
Type I – lumps, free from, s 3.1.4
Type I – matter, free from foreign, s 3.1.4
Type I – mercury as contaminant, s 3.1.6
Type I – mixing of fluids from different manufacturers, ss 1.3.6
Type I – mold growth, s 3.1
Type I – nitrate as contaminant, s 3.1.6
Type I – nitrogen as contaminant, total, s 3.1.6
Type I – painted surface, effect on, s 3.4.7
Type I – particulate contamination, s 3.1.4
Type I – performance properties, s 3.5
Type I – pH, s 3.2.3,
Type I – phosphorus as contaminant, s 3.1.6
Type I – physical properties, s 3.2
Type I – polycarbonate, effect on, s 3.4.6.2
Type I – precautions, s 1.3
Type I – qualification results, initial – comparison to subsequent results38, s 4.5.1
Type I – qualification, initial – what: all technical requirement, s 4.2.2
Type I – qualification, initial – when: change in ingredients, s 4.2.2
Type I – qualification, initial – when: change in processes, s 4.2.2
Type I – qualification, initial – when: change in processing, s 4.2.2
Type I – qualification, initial – when: confirmatory testing, s 4.2.2
Type I – qualification, initial – when: prior first shipment, s 4.2.2
Type I – qualification, initial39, s 4.2.2
Type I – qualification, multiple location – different from original location, s 4.4.3.1
Type I – qualification, multiple location – same as original location, s 4.4.3.2
Type I – qualification, multiple location – when: once, s 4.4.3.3
Type I – qualification, multiple location, s 4.4.3
Type I – qualification, periodic re- – what: aerodynamic acceptance, s 4.2.3
Type I – qualification, periodic re- – what: WSET and HHET, s 4.2.3
Type I – qualification, periodic re- – when: 2 years and 4 years thereafter, s 4.2.3
Type I – qualification, periodic re-, s 4.2.3
Type I – quality assurance, s 4
Type I – recycled glycol – obligation to report presence of, s 4.4.2.1
Type I – recycled glycol – obligation to report source of, s 4.4.2.1
Type I – recycled glycol – quality assurance, s 4.4.2.1
Type I – recycled glycol contaminants, s 4.4.2.1
Type I – recycled glycol, source of, s 4.4.2.1
Type I – refraction, s 3.2.4
Type I – refractive index, s 3.2.4
Type I – rejection by purchaser, s 7
Type I – reports by independent facilities, ss 4.1, 4.2.3, 4.5
Type I – Right to Know Regulation (US), s 5.1.4
Type I – runway concrete resistance, s 3.4.9
Type I – safety data sheet, ss 1.3.1, 4.5.2
Type I – same ingredients, s 4.4.2

38 In section 4.5.1 “subsequent reports” are defined as the periodic requalification reports. Presumably, the multiple site qualification reports should also be subject to the product consistency check of section 4.5.1.
39 AMS1424N lists three kinds of qualification (my understanding): 1) initial qualification (s 4.2.2), 2) periodic requalification (s 4.2.3) and 3) multiple site qualification (4.4.3). What tests? Initial qualification – all technical requirements; periodic qualification – aerodynamic acceptance, WSET and HHET; multiple site, if methods, materials and handling is different from original site – all technical requirements; multiple site, if same methods, materials and handling as the original site – aerodynamic acceptance, WSET and HHET. When? Initial qualification – prior to first shipment; periodic qualification – for non-recycled and recycled glycols after two years and every 4 years thereafter [AMS1424M required testing every 2 years for recycled glycol]; multiple site – after the first multiple site qualification, there no requirement for further testing at that site, unless there is a change in method, materials or handling.
Type I – same manufacturing procedures, s 4.4.2
Type I – same methods of inspection, s 4.4.2
Type I – sampling, bulk shipments, s 4.3.1
Type I – sampling, drum shipments, s 4.3.2
Type I – sampling, statistical, s 4.3.5
Type I – sampling, tote shipments40, s 4.3.2
Type I – shear, resistance to, s 3.3.4
Type I – skins, free from, s 3.1.4
Type I – slipperiness, s 1.3.5
Type I – specific gravity, s 3.2.2
Type I – stability, hard water, s 3.3.3
Type I – stability, storage, s 3.3.1
Type I – stability, thermal, s 3.3.2
Type I – storage stability, s 3.3.1
Type I – sulfur as contaminant, s 3.1.6
Type I – surface tension, s 3.2.6
Type I – suspended matter, s 3.1.4
Type I – testing, autonomous facilities, s 4.2.3
Type I – testing, confirmatory, ss 4.1, 4.2.2
Type I – testing, independent facilities, ss 4.1, 4.2.3, 4.5
Type I – testing, independent laboratories41, ss 4.1, 4.2.3, 4.5
Type I – thermal stability, s 3.3.2
Type I – thickeners, free from, s 3.1
Type I – totes, ss 4.3.2, 5.1.2, 5.1.5
Type I – transparent plastics, effect on, s 3.4.6
Type I – unpainted surface, effect on, s 3.4.8
Type I – use of concentrate form, s 1.3.2
Type I – use of dilution, s 1.3.2
Type I – water, composition of hard, s 3.3.3.1
Type I – water, soft, s 3.3.3
Type I – wetting, s 1.3.7
Type I – WSET – 3 minutes minimum, s 3.5.2
Type I – WSET – sample sheared, s 3.5.2
Type I Glycol (Conventional and Non-conventional) based fluid – technical requirements, s 3.1.2.1
Type I Glycol (Conventional and Non-conventional) based fluid, ss 1.1.1, 3.1.1, 3.1.2.1
Type I Glycol (Conventional) based fluid – technical requirements, s 3.1.2.1
Type I Glycol (Conventional) based fluid, ss 1.1.1, 3.1.1, 3.1.1.1, 3.1.2.1
Type I Glycol (Non-conventional) based fluid – technical requirements, s 3.1.2.1
Type I Glycol based fluid, ss 1.1.1, 3.1.1, 3.1.1.1
Type I Non-glycol based fluid – technical requirement, additional, ss 3.1.1.2, 3.1.3
Type I Non-glycol based fluid – technical requirements, s 3.1.2.2
Type I Non-glycol based fluid, ss 1.1.1, 3.1.1, 3.1.1.3, 3.1.2.2, 3.1.3
Type II/III/IV – compatibility with Type I, s 1.3.6, see footnote 34
WSET, Type I – 3 minutes minimum, s 3.5.2

40 Sampling requirements for bulk and drum shipments are defined in AMS1424 and AMS1428 but are undefined for totes. The industry generally considers tote shipments to be a subset of packaged shipments which include drum shipments. In this document, we considered tote shipments to be equivalent to drum shipments.

41 AMS1424N uses the various terms with apparently similar meaning: “independent laboratory” (s 4.1), “independent facility” (s 4.2.3), “autonomous test facility” (s 4.2.3), “independent testing facilities” (s 4.5). The term facility encompasses laboratory.
AMS1424/1 Deicing/Anti-Icing Fluid, Aircraft SAE Type I Glycol (Conventional and Non-Conventional) Based

Issued 2016-04-18 by SAE G-12 ADF.

SAE Type I fluids based on Conventional and Non-conventional Glycol freezing point depressants are defined and identified as AMS1424/1 (read AMS1424 slash one) Type I fluids. The purpose of the AMS1424/1 specification, which is called a category specification, is to identify the SAE Type I fluid as a Glycol (Conventional or Non-conventional) based fluid. For further information read the description for AMS1424N.

Keywords:
AMS1424/1, Title at p 1
category specification, s 1.1.1
foundation specification, s 1.1.1
freezing point depressant – Glycol, Conventional, s.1.1.1
freezing point depressant – Glycol, Non-conventional, s 1.1.1
freezing point depressant – Glycol, s 1.1.1
freezing point depressant – Non-glycol, s 1.1.1
Glycol, Conventional, s 1.1.1
Glycol, Non-conventional, s 1.1.1
specification, category, s 1.1.1
specification, foundation, s 1.1.1
Type I AMS1424/1, Title at p 1
Type I Glycol (Conventional and Non-conventional) based fluid, Title at p 1, s 1.1.1
Type I Glycol (Conventional) based fluid, s 1.1.1
Type I Glycol (Non-conventional) based fluid, s 1.1.1

AMS1424/2 Deicing/Anti-Icing Fluid, Aircraft SAE Type I Non-Glycol Based

Issued 2016-05-05 by SAE G-12 ADF.

SAE Type I fluids based on Non-glycol freezing point depressants are defined and identified as AMS1424/2 (read AMS1424 slash two) Type I fluids. The purpose of the AMS1424/2 specification, which is called a category specification, is to identify the SAE Type I fluid as a Non-glycol based fluid. For further information read the description for AMS1424N.

Keywords:
AMS1424/2, Title at p 1
category specification, s 1.1.1
foundation specification, s 1.1.1
freezing point depressant – Non-glycol, s 1.1.1
specification, category, s 1.1.1
specification, foundation, s 1.1.1
AMS1428 sets the technical requirements for deicing/anti-icing fluids (SAE Type II, III and IV) that are used to protect aircraft surfaces against freezing or frozen precipitation for a certain but limited period of time prior to takeoff. These fluids contain thickeners giving shear thinning properties to the fluids. In other words, the thickeners selected for these fluids are such that viscosity of the thickened fluid decreases when a shear strain is applied to the fluid. SAE Type II, III and IV are often known as thickened anti-icing fluids.

AMS1428 is defined as the *foundation specification* for SAE Type II, III and IV fluids. The SAE Type II, III and IV fluids are divided into two *category specifications*: a) SAE Type II/III/IV fluids based on Glycol freezing point depressants, which include Conventional Glycols and Non-conventional Glycols and b) SAE Type II/II/IV fluids based on Non-glycol freezing point depressants.

SAE Type II/III/IV fluids based on Conventional and Non-conventional Glycol freezing point depressants are defined and identified as AMS1428/1 (read AMS1428 slash one) Type II/III/IV fluids. The purpose of the AMS1428/1 specification, which is called a *category specification*, is to identify the SAE Type II/III/IV fluid as a Glycol (Conventional or Non-conventional) based fluid.

Conventional Glycols are defined as ethylene glycol, diethylene glycol and propylene glycol.

Non-conventional Glycols are defined as organic non-ionic diols and triols, e.g., 1,3-propanediol, glycerine and mixtures thereof and mixtures with conventional glycols.

SAE Type II/III/IV fluids based on Non-glycol freezing point depressants are defined and identified as AMS1428/2 (read AMS1428 slash two) Type II/III/IV fluids. The purpose of the AMS1428/2 specification, which is called a *category specification*, is to identify the SAE Type II/III/IV fluid as a Non-glycol based fluid.
Non-glycol is defined as all that is not Glycol (Conventional and Non-conventional), such as organic salts, e.g., sodium formate, sodium acetate, potassium formate, potassium acetate and any mixtures thereof.

Mixtures of any Glycol with Non-glycol are defined as Non-glycol.

In summary, there is one foundation specification for Type II/III/IV fluids, AMS1428J, and two category specifications AMS1424/1 and AMS1424/2.

Holdover Time Guidelines. SAE Type II, III and IV fluids, during winter operations, provide a limited period of protection against frozen or freezing precipitations while the aircraft is on the ground. The protection time can be estimated using fluid-specific holdover time guidelines that are published by the FAA or Transport Canada.

Commercialization Readiness. For fluid manufacturers wishing to commercialize a Type II/II/IV, it should be noted that it is insufficient to meet all the requirements of AMS1428J to be able to use such fluids on aircraft. The fluids must be on the list of qualified fluid published by the FAA or Transport Canada, obtain holdover time guidelines, also published by the FAA and Transport Canada, and preferably, perform full scale spray test. This process to prepare for commercialization of SAE Type II/III/IV fluids is described in ARP5718A.

Keywords:
1,3-propanediol. See Glycol, Non-conventional – 1,3-propanediol
aerodynamic acceptance, s 3.2.5.2
aerodynamic acceptance. See also Type II/III/IV – aerodynamic acceptance
alkali metal salts. See also Non-glycol
AMS1428 – performance v composition of matter specification, s 3.1
AMS1428/1, ss 1.1.1, 2.1.1
AMS1428/2, ss 1.1.1, 2.1.1
anti-icing performance42, s 3.2.4.1
Brix43, s 3.2.1.4
Brookfield LV viscometer. See viscometer, Brookfield LV
Buehler test44, s 3.2.2.4, Appendix A
color, Type II – yellow, s 1.1.2
color, Type III – bright yellow, s 1.1.2
color, Type IV – green, s 1.1.2

42 Anti-icing performance, as defined in AMS1428 (latest version), is comprised of WSET and HHET.
43 Brix is a unit of refraction. A table of conversion from Brix to index of refraction is available in Robert C. Weast, ed, Handbook of Chemistry and Physics, 49th ed (Cleveland OH, Chemical Rubber Co., 1968-1969) at E-225.
44 The successive dry-out and rehydration test is sometimes referred to as the Buehler test after Mr. Rolf Buehler who developed it.
colorless. See Type II/III/IV – colorless
Conventional Glycol. See Glycol, Conventional
definition – fluid, non-Newtonian, s 1.1.3
definition – fluid, pseudoplastic, s 1.1.4
definition – Glycol, s 3.1.1.1
definition – Glycol, Conventional and Non-conventional, s 3.1.1
definition – Glycol, Conventional, s 3.1.1.1
definition – Glycol, Non-, s 3.1.1.3
definition – Glycol, Non-conventional, s 3.1.1.2
definition – HOWV, s 4.2.3.145
definition – lot, Type II/III/IV, s 4.3
definition – LOUT, Type II/III/IV, s 1.3.1
definition – Non-glycol, s 3.1.1.3
definition – pseudoplastic, s 1.1.4
fluid commingling. See Type I – commingling; Type II/III/IV commingling
fluid manufacturer documentation – aerodynamic acceptance data, ss 1.1.2, 3.2.5.2
fluid manufacturer documentation – aquatic toxicity, s 3.1.4
fluid manufacturer documentation – biodegradability, s 3.1.6.3
fluid manufacturer documentation – BOD, s 3.1.6.1
fluid manufacturer documentation – cold storage stability, 3.2.2.10
fluid manufacturer documentation – dry-out exposure to cold dry air, s 3.2.2.3
fluid manufacturer documentation – exposure to dry air, s 3.2.2.2
fluid manufacturer documentation – flash point, s 3.2.1.1
fluid manufacturer documentation – fluid stability, s 3.2.2
fluid manufacturer documentation – hard water stability, s 3.2.2.8
fluid manufacturer documentation – HHET, s 3.2.4.1
fluid manufacturer documentation – LOUT for intended dilutions, s 1.3.1
fluid manufacturer documentation – LOUT, s 1.3.1
fluid manufacturer documentation – materials compatibility, 3.3.2
fluid manufacturer documentation – pavement compatibility, s 3.3.5
fluid manufacturer documentation – pH limits, s 3.2.1.3
fluid manufacturer documentation – physical properties, s 3.2
fluid manufacturer documentation – refractive index limits, s 3.2.1.4
fluid manufacturer documentation – safety data sheet, ss 1.3.2.4.5.2
fluid manufacturer documentation – specific gravity, s 3.2.1.2
fluid manufacturer documentation – storage stability, s 3.2.2.6
fluid manufacturer documentation – successive dry out and rehydration, s 3.2.2.4
fluid manufacturer documentation – surface tension, s 3.2.1.5
fluid manufacturer documentation – tendency to foam, s 3.2.2.9
fluid manufacturer documentation – thin film thermal stability, s 3.2.2.5
fluid manufacturer documentation – TOD or COD, s 3.1.6.2
fluid manufacturer documentation – toxicity information, s 3.1.4
fluid manufacturer documentation – trace contaminants, s 3.1.7
fluid manufacturer documentation – Type I, Type II or Type IV, s 1.1.2
fluid manufacturer documentation – viscosity limits, s 3.2.3.3
fluid manufacturer documentation – WSET, s 3.2.4.1
fluid, neat. See also Type II/III/IV – neat fluid
fluid, non-Newtonian – definition, s 1.1.3
fluid, non-Newtonian, Title at p 1, ss 1.1, 1.1.3, 3.2.3, 3.2.3.1
fluid, pseudoplastic – definition, s 1.1.4

45 See footnote 5
fluid, pseudoplastic, Title at p 1, ss 1.1.4, 3.2.3
fluid, thickened. See Type II/III/IV
freezing point depressant, Glycol, Conventional and Non-Conventional, ss 3.1.1, 3.1.2.1
freezing point depressant, Glycol, Conventional, ss 3.1.1, 3.1.1.1
freezing point depressant, Glycol, Non-conventional, ss 3.1.1, 3.1.1.2
freezing point depressant, Non-glycol, ss 3.1.1, 3.1.1.3, 3.1.2.2, 3.1.3
glycerine. See Glycol, Non-conventional – glycerine
Glycol – definition, s 3.1.1.1
Glycol, Conventional – definition, s 3.1.1.1
Glycol, Conventional – diethylene glycol, ss 3.1.1.1, 3.1.2.1
Glycol, Conventional – ethylene glycol, ss 3.1.1.1, 3.1.2.1
Glycol, Conventional – propylene glycol, ss 3.1.1.1, 3.1.2.1
Glycol, Conventional and Non-conventional – definition, s 3.1.1
glycol, Non-. See Non-glycol
Glycol, Non-conventional – 1,3-propanediol, s 3.1.1.2
Glycol, Non-conventional – definition, s 3.1.1.2
Glycol, Non-conventional – glycerine, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures of, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures with Conventional Glycol, s 3.1.1.2
HHET, Type II 50/50 – 0.5 hours minimum, s 3.2.4.1
HHET, Type II 75/25 – 5 hours minimum, s 3.2.4.1
HHET, Type II neat – 4 hours minimum, s 3.2.4.1
HHET, Type III 75/25 – determine and report, s 3.2.4.1
HHET, Type III 50/50 – determine and report, s 3.2.4.1
HHET, Type III neat – 2 hours minimum, s 3.2.4.1
HHET, Type IV 50/50t – 0.5 hours minimum, s 3.4.2.1
HHET, Type IV 75/25 – 2 hours minimum, s 3.4.2.1
HHET, Type IV neat – 8 hours minimum, s 3.4.2.1
lot, Type II/III/IV – definition, s 4.3
LOUT, Type II/III/IV – definition, s 1.3.1
maximum on-wing viscosity. See HOWV
neat. See Type II/III/IV – neat fluid
Non-conventional Glycol. See Glycol, Non-conventional
Non-glycol – definition, s 3.1.1.3
Non-glycol – organic salts mixtures with Glycol, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – organic salts, mixtures of, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – potassium acetate, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – potassium formate, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – sodium acetate, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – sodium formate, ss 3.1.1.3, 3.1.2.2, 3.1.3
non-Newtonian fluid. See fluid, non-Newtonian
propylene glycol. See also Glycol, Conventional – propylene glycol; EG v PG
pseudoplastic fluid. See fluid, pseudoplastic
shear thinning. See Type II/III/IV – shear thinning
Type II 50/50 – HHET 0.5 hours minimum, s 3.2.4.1
Type II 50/50 – WSET 5 minutes minimum, s 3.2.4.1
Type II 75/25 – HHET 2 hours minimum, s 3.2.4.1
Type II 75/25 – WSET 20 minutes minimum, s 3.2.4.1
Type II color – yellow, s 1.1.2
Type II neat – HHET 4 hours minimum, s 3.2.4.1

46 Thickened fluid is a generic term for Type II/III/IV fluids as all these fluids contain thickeners.
Type II neat – WSET 30 minutes minimum, s 3.2.4.1
Type II. See also Type II/III/IV; Type II/IV
Type II/III/IV – aerodynamic acceptance of highest viscosity dilution sample, s 3.2.5.3
Type II/III/IV – aerodynamic acceptance of sheared sample, s 3.2.5.1
Type II/III/IV – aerodynamic acceptance of unsheared sample, s 3.2.5.1
Type II/III/IV – approval by purchaser s 4.4.1
Type II/III/IV – approval, re- ss 4.2.3, 4.4.2
Type II/III/IV – aquatic toxicity, s 3.1.6.4
Type II/III/IV – biodegradability, s 3.1.6.3
Type II/III/IV – BOD, s 3.1.6.1
Type II/III/IV – Brookfield LV viscometer, s 3.2.3.2.1
Type II/III/IV – carbon brake compatibility, s 1.3.6
Type II/III/IV – certificate of analysis, s 4.2.1
Type II/III/IV – change in formulation, ss 4.2.3, 4.4.2
Type II/III/IV – change in ingredients, ss 4.2.3, 4.4.2
Type II/III/IV – change in production method, s 4.3.2, 4.4.2
Type II/III/IV – corrosion, aluminum alloy, s 3.3.2.2
Type II/III/IV – corrosion, low embrittling cadmium plate, s 3.3.2.3
Type II/III/IV – corrosion, sandwich, s 3.3.2.1
Type II/III/IV – corrosion, stress-, s 3.3.2.4
Type II/III/IV – corrosion, total immersion, s 3.3.2.2
Type II/III/IV – corrosion resistance, s 3.3.2.4.1
Type II/III/IV – corrosion, aluminum alloy, s 3.3.2.2
Type II/III/IV – direct current hazard, s 1.3.3
Type II/III/IV – dry-out exposure to cold dry air, s 3.2.2.3
Type II/III/IV – dry-out exposure to dry air, s 3.2.2.3
Type II/III/IV – dry-out, heated leading edge, s 3.2.2.5
Type II/III/IV – dry-out, successive test. See Type II/III/IV – successive dry-out and rehydration test
Type II/III/IV – dry-out, successive. See Type II/III/IV residue; Type II/IV residue
Type II/III/IV – effect on acrylic plastics, s 3.3.2.6
Type II/III/IV – effect on aircraft materials, s 3.3.2
Type II/III/IV – effect on painted surfaces, s 3.3.3
Type II/III/IV – effect on polycarbonate, s 3.3.2.6.1
Type II/III/IV – effect on transparent plastics, s 3.3.2.6
Type II/III/IV – effect on unpainted surfaces, s 3.3.4
Type II/III/IV – electrochemical dehydrolysis, s 1.3.3
Type II/III/IV – environmental information, s 3.1.6
Type II/III/IV – exposure to cold dry air, s 3.2.2.3
Type II/III/IV – exposure to dry air, s 3.2.2.2
Type II/III/IV – exposure, human, s 1.3.2
Type II/III/IV – FAA/TC list of fluids\(^{47}\), s 1.5
Type II/III/IV – fire hazard inhibitor, s 1.3.3
Type II/III/IV – fire hazard, s 1.3.3
Type II/III/IV – flash point , s 3.2.1.1
Type II/III/IV – fluid elimination, s 3.2.5.4
Type II/III/IV – foam, tendency to, s 3.2.2.9
Type II/III/IV – freezing point buffer, s 1.3.1
Type II/III/IV – freezing point, s 3.3.1
Type II/III/IV – friction, s 1.3.5
Type II/III/IV – glycol dehydrolysis, s 1.3.3
Type II/III/IV – halogen reporting requirement, s 3.1.7
Type II/III/IV – hard water composition, s 3.2.2.8.1
Type II/III/IV – hard water stability, s 3.2.2.8
Type II/III/IV – HHET requirements, s 3.4.2.1
Type II/III/IV – high viscosity sample\(^{48}\), ss 3.2.5, 4.2.3.1
Type II/III/IV – highest viscosity dilution, s 3.2.5.3
Type II/III/IV – HOWV, s 4.2.3.1
Type II/III/IV – HOWV, s 4.2.3.1
Type II/III/IV – HOWV, s 4.2.3.1\(^{49}\)
Type II/III/IV – hydrogen embrittlement , s 3.3.2.5
Type II/III/IV – lead reporting requirement, s 3.1.7
Type II/III/IV – leading edge dry-out, heated, s 3.2.2.5
Type II/III/IV – licensee manufacturing, s 4.4.3
Type II/III/IV – list of fluids, FAA/TC, s 1.5. See also list of fluids, FAA/TC; list of fluids (FAA); list of fluids (TC)
Type II/III/IV – list of qualified fluids\(^{50}\), s 1.5
Type II/III/IV – lot acceptance, s 4.2.1
Type II/III/IV – lot, s 4.3
Type II/III/IV – lot, ss 4.1, 4.2.1, 4.3, 4.5.1.1, 5.1.1.1, 5.1.2
Type II/III/IV – LOUT , s 1.3.1
Type II/III/IV – LOUT, obligation to report, s 1.3.1
Type II/III/IV – low embrittling cadmium plate, s 3.3.2.3
Type II/III/IV – Low Viscosity sample, s 4.2.3.2
Type II/III/IV – magnesium alloy, corrosion of, s 3.3.2.2
Type II/III/IV – materials compatibility, s 3.3.2
Type II/III/IV – maximum on-wing viscosity. See Type II/III/IV – HOWV
Type II/III/IV – mercury reporting requirement, s 3.1.7

\(^{47}\)Both the FAA and Transport Canada issue a list of fluids. If a document refers to both, it will be indexed as “list of fluids, FAA/TC”. If the document refers to only one list, it will be indexed as “list of fluids, FAA” or “list of fluid, TC”, as the case may be.

\(^{48}\)ARP5718B recommends to fluid manufacturers to carefully select the viscosities of the high viscosity sample and low viscosity sample before submitting to the testing laboratories, as these viscosities will be used to establish to set the quality control limits for the fluid delivered. The viscosity of the high viscosity sample will become the highest on-wing viscosity (HOWV), also known as the maximum on-wing viscosity (MOWV).

\(^{49}\)See footnote 5

\(^{50}\)Section 1.5 of AMS1428J refers to the FAA’s and Transport Canada’s list of qualified fluids. FAA and Transport Canada no longer use the term “qualified” for the list of fluids published in their holdover time guidelines.
Type II/III/IV – mixing with fluid from different manufacturers, s 1.3.4
Type II/III/IV – mixture with other fluids, s 1.3.4
Type II/III/IV – multiple location manufacturing, s 4.4.3
Type II/III/IV – neat, ss 1.3.1, 3.2.1
Type II/III/IV – nitrate reporting requirement, s 3.1.7
Type II/III/IV – noble metal coated wiring, s 1.3.3
Type II/III/IV – non-glycol based fluids, ss 3.1.1, 3.1.1.3, 3.1.3
Type II/III/IV – non-Newtonian, ss 1.1, 1.1.3
Type II/III/IV – overnight exposure to dry air, s 3.2.2.2
Type II/III/IV – packaging, s 5.1
Type II/III/IV – pavement compatibility, s 3.3.5
Type II/III/IV – periodic tests, s 4.2.2
Type II/III/IV – pH, s 3.2.1.3
Type II/III/IV – phosphate reporting requirement, s 3.1.7
Type II/III/IV – polycarbonate, effect on. See Type II/III/IV – effect on transparent plastics
Type II/III/IV – preproduction tests, ss 3.2.2.2.2, 3.2.5.3.1, 4.2.3, 4.2.3.1, 4.5.2, A.4, A.5.1, A.6.4
Type II/III/IV – pseudoplastic, s 1.1.4
Type II/III/IV – qualification reports, s 4.5.1
Type II/III/IV – qualification, initial, ss 4.2.3.1, 4.5.1
Type II/III/IV – qualification, periodic re-, ss 4.5.1, 4.5.1.2
Type II/III/IV – quality assurance, s 4
Type II/III/IV – reaction, exothermic, s 1.3.3
Type II/III/IV – re-approval, ss 4.2.3, 4.4.2
Type II/III/IV – refractive index, s 3.2.1.4
Type II/III/IV – rejection, s 4.6
Type II/III/IV – resampling, s 4.6
Type II/III/IV – residue. See Type II/III/IV residue; Type II/IV residue
Type II/III/IV – retesting, s 4.6
Type II/III/IV – rheological properties, s 3.2.3
Type II/III/IV – runway concrete scaling, s 3.3.5.1
Type II/III/IV – sales specification, s 3.2.3.3
Type II/III/IV – same ingredients, s 4.4.2
Type II/III/IV – sample selection. See also HOT, process to obtain – sample selection
Type II/III/IV – sample selection, ss 4.2.3, 4.2.3.1, 4.2.3.2
Type II/III/IV – shear stability, s 3.2.2.7
Type II/III/IV – shear stress, effect on apparent viscosity, ss 1.1.3, 1.1.4
Type II/III/IV – shear thinning\(^{52}\), s 1.1.4
Type II/III/IV – silver coated wiring, s 1.3.3
Type II/III/IV – slipperiness, s 1.3.5
Type II/III/IV – specific gravity, s 3.2.1.2
Type II/III/IV – storage stability waived, s 4.2.3
Type II/III/IV – storage stability, s 3.2.2.6
Type II/III/IV – storage stability, cold, s 3.2.2.10
Type II/III/IV – storage, long term, s 3.2.2.1
Type II/III/IV – stress-corrosion resistance, s 3.3.2.4
Type II/III/IV – subcontractor manufacturing, s 4.4.3
Type II/III/IV – successive dry out and rehydration test, s 3.2.2.4, Appendix A
Type II/III/IV – sulfur reporting requirement, s 3.1.7

\(^{51}\) Several sections refer to preproduction samples or tests. It should be understood that the initial qualification tests of ss 4.2.3, 4.2.3.1, 4.2.3.2 are performed on preproduction samples. This is made explicit in ss A.4, A.5.1, A.6.4

\(^{52}\) Shear thinning is generally considered a synonym of pseudoplastic, that is a fluid whose viscosity is decreased when subjected to shear strain (excluding time dependent effects).
Type II/III/IV – surface tension, s 3.2.1.5
Type II/III/IV – switches, defective, s 1.3.3
Type II/III/IV – technical requirements, s 3
Type II/III/IV – temperature cycling, s 3.2.2.10
Type II/III/IV – thermal stability, accelerated aging, s 3.2.2.1
Type II/III/IV – thermal stability, thin film, s 3.2.2.5
Type II/III/IV – thickened fluid, s 3.2.3
Type II/III/IV – titanium corrosion resistance, s 3.3.2.2
Type II/III/IV – TOD, s 3.1.6.2
Type II/III/IV – toxicity, s 3.1.4
Type II/III/IV – trace contaminants, s 3.1.7
Type II/III/IV – U.S Military procurement, s 4.2.3.3
Type II/III/IV – uncolored, s 3.1.5
Type II/III/IV – undiluted fluid, ss 1.3.1, 3.2.1
Type II/III/IV – viscosity limits, s 3.2.3.3
Type II/III/IV – viscosity measurement, s 3.2.3.2
Type II/III/IV – wiring, defective, s 1.3.3
Type II/III/IV – WSET limits, s 3.2.4.1
Type II/III/IV residue formation – first step application of Type II/III/IV in two-step application, s 1.3.7
Type II/III/IV residue formation – one-step application of Type II/III/IV, s 1.3.7
Type II/III/IV residue formation test. See Type II/III/IV – successive dry out and rehydration test
Type II/III/IV residue formation, s 3.2.2.4
Type II/III/IV residue formation. See also Type II/IV residue formation
Type II/III/IV residue in aerodynamically quiet areas, s 1.3.7
Type II/III/IV residue in cavities, s 1.3.7
Type II/III/IV residue in gaps, s 1.3.7
Type II/III/IV residue, effect of – flight safety, s 1.3.7
Type III 50/50 – HHET determine and report, s 3.2.4.1
Type III 50/50 – WSET determine and report, s 3.2.4.1
Type III 75/25 – HHET determine and report, s 3.2.4.1
Type III 75/25 – WSET determine and report, s 3.2.4.1
Type III color – bright yellow, s 1.1.2
Type III neat – HHET 2 hours minimum, s 3.2.4.1
Type III neat – WSET 20 minutes minimum, s 3.2.4.1
Type III. See also Type II/III/IV
Type IV 50/50 – HHET 0.5 hours minimum, s 3.2.4.1
Type IV 50/50 – WSET 5 minutes minimum, s 3.2.4.1
Type IV 75/25 – HHET 2 hours minimum, s 3.2.4.1
Type IV 75/25 – WSET 20 minutes minimum, s 3.2.4.1
Type IV color – green, s 1.1.2
Type IV neat – HHET 8 hours minimum, s 3.2.4.1
Type IV neat – WSET 80 minutes minimum, s 3.2.4.1
Type IV. See also Type II/III/IV; Type II/IV
viscometer, Brookfield LV – cold storage stability, s 3.2.2.10
viscometer, Brookfield LV – highest viscosity dilution, s 3.2.5.3.1
viscometer, Brookfield LV – small sample adapter, ss 3.2.3.2, 3.2.5.1
viscometer, Brookfield LV – Type II/III/IV viscosity measurement, ss 3.2.3.2, 3.2.3.2.1
WSET, Type II 50/50 – 5 minutes minimum, s 3.2.4.1
WSET, Type II 75/25 – 20 minutes minimum, s 3.2.4.1
WSET, Type II neat – 30 minutes minimum, s 3.2.4.1
WSET, Type III 50/50 – determine and report, s 3.2.4.1
WSET, Type III 75/25 – determine and report, s 3.2.4.1
WSET, Type III neat – 20 minutes minimum, s 3.2.4.1
WSET, Type IV 50/50 – 5 minutes minimum, s 3.2.4.1
WSET, Type IV 75/25 – 20 minutes minimum, s 3.2.4.1
WSET, Type IV neat – 80 minutes minimum, s 3.2.4.1

AMS1428/1 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Glycol (Conventional and Non-Conventional) Based

Issued 2017-02-14 by SAE G-12 ADF

SAE Type II, II and IV fluids based on Conventional and Non-conventional Glycol freezing point depressants are defined and identified as AMS1428/1 (read AMS1428 slash one) Type II, III and IV fluids. The purpose of the AMS1428/1 specification, which is called a category specification, is to identify the SAE Type I fluid as a Glycol (Conventional or Non-conventional) based fluid. For further information, read the definition of Glycol Conventional and Non-Conventional in AMS1428J, which is defined as the base specification.

Keywords:
AMS1428/1, Title at p 1
category specification, s 1.1.1
foundation specification, s 1.1.1
freezing point depressant – Glycol, Conventional, s.1.1.1
freezing point depressant – Glycol, Non-conventional, s 1.1.1
freezing point depressant – Glycol, s 1.1.1
freezing point depressant – Non-glycol, s 1.1.1
Glycol, Conventional, s 1.1.1
Glycol, Non-conventional, s 1.1.1
specification, category, s 1.1.1
specification, foundation, s 1.1.1
Type II/III/IV AMS1428/1, Title at p 1
Type II/III/IV Glycol (Conventional and Non-conventional) based fluid, Title at p 1, s 1.1.1
Type II/III/IV Glycol (Conventional) based fluid, s 1.1.1
Type II/III/IV Glycol (Non-conventional) based fluid, s 1.1.1
Type II/III/IV purchase documents, ss 2, 9.2

AMS1428/2 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Non-Glycol Glycol Based

Issued 2017-02-09 by SAE G-12 ADF

SAE Type II, II and IV fluids based on Non-Glycol freezing point depressants are defined and identified as AMS1428/2 (read AMS1428 slash two) Type II, III and IV fluids. The purpose of the AMS1428/2 specification, which is called a category specification, is to identify the SAE Type II,
III and IV fluids as a Non-Glycol based fluid. For further information, read the definition of Glycol Conventional and Non-Conventional in AMS1428J, which is called the base specification.

Keywords:
AMS1428/2, Title at p 1
category specification, s 1.1.1
foundation specification, s 1.1.1
freezing point depressant – Glycol, Conventional, s.1.1.1
freezing point depressant – Glycol, Non-conventional, s 1.1.1
freezing point depressant – Glycol, s 1.1.1
freezing point depressant – Non-glycol, s 1.1.1
Glycol, Conventional, s 1.1.1
Glycol, Non-conventional, s 1.1.1
specification, category, s 1.1.1
specification, foundation, s 1.1.1
Type II/III/IV AMS1428/2, Title at p 1
Type II/III/IV Glycol (Conventional and Non-conventional) based fluid, Title at p 1, s 1.1.1
Type II/III/IV Glycol (Conventional) based fluid, s 1.1.1
Type II/III/IV Glycol (Non-conventional) based fluid, s 1.1.1
Type II/III/IV purchase documents, ss 2, 9.2

AS9968 Laboratory Viscosity Measurement of Thickened Aircraft Deicing/Anti-icing Fluids with the Brookfield LV Viscometer

Issued 2014-07-22 by SAE G-12 ADF.

AS9968 describes a standard laboratory method (as opposed to a field method) for viscosity measurements of thickened (SAE Type II, III and IV) anti-icing fluids. Many fluid manufacturers publish alternate methods for their fluids. In case of conflicting results between the two methods, the manufacturer method takes precedence. To compare viscosities, exactly the same measurement elements (including spindle size, speed of rotation, time after beginning of rotation, container size and temperature) must have been used to obtain those viscosities.

Keywords:
fluid manufacturer documentation – viscosity measurement method, s 1
Type II/III/IV viscosity measurement method, Title at p 1, Rationale at p 1
viscometer, Brookfield LV, Title at p 1, Rationale at p 1, ss 3.1, 3.3.8.1
viscosity measurement method – air bubble free sample s 3.3.2

53 Viscosity measurement methods and viscosity field check. There are three ways of verifying that an SAE Type II/III/IV is above its lowest on-wing viscosity (LOWV): a) viscosity measurement method provided by the fluid manufacturer (the “manufacturer method”), b) viscosity measurement method described in AS9968 (the “AS9968 method”) and c) “viscosity” field check (or field test) as described in AIR5704 or provided by the fluid manufacturer, such as a falling ball method. Here, we attempt to make a distinction between the laboratory viscosity measurement methods which use a Brookfield LV viscometer where the result is a numerical viscosity value in mPa·s and viscosity field checks where the result is generally a pass/fail result without a numerical viscosity value.
AIR5704 Field Viscosity Test for Thickened Aircraft Anti-Icing Fluids

Reaffirmed 2016-06-09 by SAE G-12 ADF.

AIR5704 provides a description of a field screening method (or field “viscosity” check) for verifying an SAE Type II, III or IV anti-icing fluid is above its minimum low shear viscosity as published with holdover time guidelines. The test will determine if the fluid is (a) satisfactory, (b) unsatisfactory, or (c) borderline needing more advanced viscometry testing. Other field tests may be required to determine if an anti-icing fluid is useable, such as refractive index, pH, appearance or other tests as may be recommended by the fluid manufacturer.

Keywords:
air bubble removal by centrifugation, s 3.2
Stony Brook apparatus for viscosity field check, s 3.3
viscosity field check – air bubble removal by centrifugation, s 3.2
viscosity field check – air bubbles, s 3.2
viscosity field check – screening method, Rationale at p 1
viscosity field check – Stony Brook apparatus, s 3.3
viscosity field check for Type II/III/IV, Title at p 1
viscosity field check v fluid manufacturer method, Foreword at p 1, see footnote 53
viscosity field check, Title at p 1
viscosity field test. See viscosity field check
viscosity measurement method v field check see footnote 53
The purpose of ARP6207 is to explain to fluid manufacturers and users, at a high level, the steps required for an experimental fluid i) to become a commercially useable fluid, ii) to be allowed to use the generic Type holdover times, and iii) to be listed on the FAA and Transport Canada list of fluids.

Meeting all of the technical requirements of AMS1424N is insufficient for a Type I deicing fluid to be used on an aircraft. ARP56207 explains that there are four conditions to commercialize an SAE Type I fluid, the first three are mandatory, the fourth one is highly recommended: 1) meet the technical requirements of AMS1424, 2) be identified on the FAA/Transport Canada list of fluids and 3) have a performance such that it can be used with generic Type I holdover time guidelines published by the FAA/Transport Canada and 4) running a field spray test to demonstrate operational performance

ARP6207 a) describes the preparatory steps to test an experimental fluid according to AMS1424, b) advises fluid manufacturers on sample selection issues for experimental fluids, c) provides a suggested protocol for field spray testing, d) details the protocol to demonstrate that an experimental Type I can be used with the FAA/Transport Canada generic Type I holdover time guidelines, e) explains the process for inclusion and exclusion of fluids on the FAA/Transport Canada list of fluids, f) describes the role of the SAE G-12 ADF and HOT Committees and g) the publication process for Type I holdover time guidelines.

Its sister document for AMS1428 fluids, is ARP5718B whose title is Qualifications Required for SAE Type II/III/IV aircraft Deicing/Anti-Icing Fluid.

Keywords:
aerodynamic acceptance – definition, s 2.3
aircraft manufacturer documentation – list fluid types allowed on aircraft, footnote 1 at p 1
alkali organic salt based Type I – exclusion from FAA/Transport Canada list of fluids, s 3.2
alkali organic salt based Type I – effect on Type II/III/IV protection time, s 3.2
alkali organic salt based Type I – HOT – invalid, s 3.2
allowance time – definition, s 2.3
allowance time – failure mode – aerodynamic and visual, s 2.3
allowance time – wind tunnel testing, s 3.5
allowance time, Type I – none, s 3.5
allowance time, Type II – none, s 3.5
allowance time. See also wind tunnel testing
AMS1424, purpose of – minimum requirements for Type I, s 3.3.1
AMS1424/1, purpose of – identity of freezing point depressant, s 3.2
AMS1424/2, purpose of – identity of freezing point depressant, s 3.2
AOS. See alkali organic salt
color intensity, evaluation of – field spray test, s 4.3d
definition – aerodynamic acceptance, s 2.3
definition – allowance time, s 2.3
definition – endurance time, s 2.3
definition – FAA/Transport Canada list of fluids. See definition – list of fluids, FAA/Transport Canada
definition – HOT guideline, s 2.3
definition – HOT guideline, fluid-specific, s 2.3
definition – HOT guideline, generic, ss 2.3, 5.5
definition – HOT table. See definition – HOT guideline
definition – HOT, s 2.3
definition – list of fluids, FAA/Transport Canada, s 2.3
definition – LOUT, Type I, s 2.3
definition – WSET, s 2.3
endurance time – definition, s 2.3
endurance time tests, Type I – glycol based – none, s 3.4.1
endurance time tests, Type I – non-glycol based – test required, s 3.4.1
endurance time tests, Type I – sample selection, s 3.4.2
FAA/Transport Canada list of fluids. See list of fluids, FAA/Transport Canada
failure mode, allowance time – aerodynamic and visual, s 2.3
failure mode, endurance time – visual, s 2.3
field spray test. See spray test, field
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – initial qualification test report – aerodynamic acceptance, ss 5.7.2, 5.7.2
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – original qualification test data, ss 5.7.2, 5.7.2
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – initial qualification test report – aerodynamic acceptance, ss 5.6.3, 5.6.3.1
fluid manufacturer – obligation to provide to FAA/TC – Type I – periodic requalification test report – aerodynamic acceptance, ss 5.6.3, 5.6.3.1
fluid manufacturer – obligation to provide to FAA/TC – Type I – periodic requalification test report – anti-icing performance, ss 5.6.3, 5.6.3.1
fluid manufacturer – obligation to provide to FAA/TC – Type I – restrictions on use of, ss 5.2.1
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – initial qualification test report – WSET, ss 5.7.2
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – initial qualification test report – aerodynamic acceptance, high speed and or low speed, ss 5.6.2, 5.6.2.1a
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – initial qualification test report – anti-icing performance, ss 5.6.2, 5.6.2.1a
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – freezing point data, ss 5.6.2, 5.6.2.1c
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – endurance time data, ss 3.4.1

62
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) EG based – endurance time data not required, s 3.4.1
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) PG based – endurance time data not required, s 3.4.1
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) DEG based – endurance time data not required, s 3.4.1
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – final name by May 01, s 5.3
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – unique name, s 5.3
fluid manufacturer – sample selection considerations, Type I, ss 3.3.2, 3.4.2
fluid manufacturer licensee – Type I HOT guideline, s 5.7.2
fluid name – final commercial name, s 5.3
fluid name – formulation change, upon, s 5.3
fluid name – new unique name, s 5.3
fluid name – reformulation, s 5.3
fluid, list of. See list of fluids
fluid, new – data required for use with generic HOT, s 5.7
fluid, new – new unique name, mandatory, s 5.3
fluid, new – obligation to provide information to FAA/TC, s 5.6.2
fluid-specific HOT guidelines. See HOT, fluid-specific
foam, tendency to – field spray test, s 4.3a
formulation change – name change, s 5.3
freezing point buffer – Type I – 10°C, s 2.3
generic HOT guidelines. See HOT, generic
HOT – definition, s 2.3
HOT – failure mode – visual, s 2.3
HOT guideline – definition, s 2.3
HOT guideline, fluid specific Type I – none, s 2.3
HOT guideline, fluid-specific – definition, s 2.3
HOT guideline, generic – definition, s 2.3
HOT guideline, publication date for, ss 8, 9
HOT guideline, publication timeline for, s 9
HOT table synonym for HOT guideline, s 2.3
HOT values, capping of. See HOT, preparation of Type I – HOT values, capping of
HOT values, rounding of. See HOT, preparation of Type I – HOT values, rounding of
HOT, preparation of Type I – cautions – HOT reduced – aircraft skin temperature lower than OAT, s 5.1.4a
HOT, preparation of Type I – cautions – no inflight-protection, s 5.1.4b
HOT, preparation of Type I – cautions – protection time shortened – jet blast, s 5.1.4a
HOT, preparation of Type I – cautions – protection time shortened – high winds, s 5.1.4a
HOT, preparation of Type I – cautions – protection time shortened – heavy weather, 5.1.4a
HOT, preparation of Type I – cautions – protection time shortened – heavy precipitation rates, s 5.1.4a
HOT, preparation of Type I – cautions – protection time shortened – high moisture content, s 5.1.4a
HOT, preparation of Type I – cells, s 5.1.2
HOT, preparation of Type I – date of issue, s 5.1.5
HOT, preparation of Type I – date of obsolescence, s 5.1.5
HOT, preparation of Type I – date of revision, s 5.1.5
HOT, preparation of Type I – fluid product names, s 5.3
HOT, preparation of Type I – fluid specific – none published, ss 2.3, 5.1, 5.4
HOT, preparation of Type I – format, s 5.1
HOT, preparation of Type I – generic – unchanging, s 2.3
HOT, preparation of Type I – generic, ss 2.3, 5.1
HOT, preparation of Type I – HOT values from R&D, s 2.3
HOT, preparation of Type I – HOT values not from endurance time data, s 5.4
Aircraft Deicing Documents – Issued by the G-12 Holdover Time Committee

spray trial, field. See spray test, field
Transport Canada/FAA list of fluids. See list of fluids, FAA/Transport Canada
Type I – field spray test54, Foreword at p 1, ss 1d, 4
Type I – sample selection considerations, ss 3.3.2, 3.4.2
Type I – sample selection. See also HOT, process to obtain – sample selection
Type I – use on aircraft. See Type I commercialization condition
Type I commercialization condition – AMS1424 technical requirements, meet the, Foreword at p 1
Type I commercialization condition – FAA/Transport Canada list of fluids, be on the, Foreword at p 1
Type I commercialization condition – field spray test, Foreword at p 1
Type I commercialization condition – performance sufficient to be used with HOT guideline, Foreword at p 1
Type I decision to commercialize, ss 5.3, 9
Type I manufacturer. See fluid manufacturer
Type I name change upon reformulation, s 5.3
Type I name, experimental, s 5.3
Type I name, final commercial – date due May 01, s 5.3
Type I name, new, s 5.3
Type I qualification. See ARP6207
Type I sample selection considerations, ss 3.4, 3.4.1, 3.4.2, 3.4.3
wind tunnel testing – purpose – establish allowance time, s 3.5
wind tunnel testing – Type I – none, s 3.5
wind tunnel testing – Type III/IV neat only, s 3.5
WSET – definition, s 2.3

ARP5945A Endurance Time Tests for SAE Type I Aircraft Deicing/Anti-icing Fluids

Revised 2017-10-10 by SAE G-12 HOT.

ARP5945A provides sample selection criteria and test procedures for SAE Type I aircraft deicing/anti-icing fluids, required for the generation of endurance time data of acceptable quality for review by the SAE G-12 HOT. Specifically, ARP5945A describes laboratory endurance procedure testing for freezing fog, freezing drizzle, light freezing rain, rain on cold soaked wing, and snow (two methods, NCAR/APS method and the AMIL method). It describes natural outdoor procedures for snow and frost.

A significant body of previous research and testing has indicated that all Type I fluids formulated with propylene glycol, ethylene glycol, and diethylene glycol perform in a similar manner from an endurance time perspective. Type I deicing/anti-icing fluids whose freezing point depressant is one of those three glycols do not require testing for endurance times. Fluids formulated with 1)

54 Field spray trial (p 1) and field spray test (s 4.1) appear to be used interchangeably in ARP6207.
glycol freezing point depressants other than those listed above, and 2) all non-glycol freezing point
depressants, must be tested for endurance times using the methods described in this ARP5945A.

Its sister document for AMS1428 Type II/III/IV fluids is ARP5485B whose title is *Endurance
Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-Icing Fluids.*

Keywords:
- crystallization, delayed, s 4.7.3
- definition – endurance time, Foreword at p 1
- diethylene glycol based Type I – endurance time tests not required, ss 1.1, 3.1
- endurance time – definition, Foreword at p 1
- endurance time tests, Type I – crystallization, delayed, s 4.7.3
- endurance time tests, Type I – data examination by SAE G-12 HOT, Rationale at p 1, ss 1.1, 1.2
- endurance time tests, Type I – data validation by SAE G-12 HOT, Rationale at p 1, ss 1.1, 1.2
- endurance time tests, Type I – delayed crystallization, s 4.7.3
- endurance time tests, Type I – diethylene glycol based fluid – test not required, s 1.1
- endurance time tests, Type I – ethylene glycol based fluid – test not required, s 1.1
- endurance time tests, Type I – failure mode – visual, Foreword at p 1
- endurance time tests, Type I – failure mode, snow – dilution – more prevalent, s 10.4.6
- endurance time tests, Type I – failure mode, snow – dilution, s 10.4.6
- endurance time tests, Type I – failure mode, snow – snow-bridging, s 10.4.6
- endurance time tests, Type I – failure, frozen contamination – 30% area, s 4.7.2
- endurance time tests, Type I – failure, frozen contamination – appearance, s 4.7.2
- endurance time tests, Type I – failure, snow – 30% area or non-absorption over 5 crosshairs, s 10.4.6
- endurance time tests, Type I – fluid manufacturer documentation – aerodynamic acceptance data, s 3.4.2
- endurance time tests, Type I – fluid manufacturer documentation – freezing point data, s 3.2.5b
- endurance time tests, Type I – fluid manufacturer documentation – freezing point v dilution data, s 3.2.5a
- endurance time tests, Type I – fluid manufacturer documentation – freezing point v refractive index data, s
 3.2.5a
- endurance time tests, Type I – fluid manufacturer documentation – LOUT, s 3.4.2
- endurance time tests, Type I – fluid manufacturer documentation – safety data sheet, s 3.2.5c
- endurance time tests, Type I – fog, freezing, s 6
- endurance time tests, Type I – freezing drizzle, s 7
- endurance time tests, Type I – freezing fog, s 6
- endurance time tests, Type I – frost, laboratory s 5
- endurance time tests, Type I – frost, natural, s 12
- endurance time tests, Type I – glycol based fluid, other – test required, s 1.1
- endurance time tests, Type I – ice crystal seeding, s 4.7.3
- endurance time tests, Type I – icing intensity measurements by regression analysis, s 4.6.2.2
- endurance time tests, Type I – icing intensity measurements with reference ice-catch plates, s 4.6.2.1
- endurance time tests, Type I – icing intensity measurements, s 4.6.2
- endurance time tests, Type I – light freezing rain, s 8
- endurance time tests, Type I – manufacturer’s mandatory documentation, s 3.2.5
- endurance time tests, Type I – non-glycol based fluid – test required, ss 1.1, 3.1
- endurance time tests, Type I – plate cleanliness, ss 7.4.1, 11.4.1
- endurance time tests, Type I – propylene glycol based fluid – test not required, ss 1.1, 3.1
- endurance time tests, Type I – purpose, p 1
- endurance time tests, Type I – rain on cold soaked wing, s 9
- endurance time tests, Type I – regression analysis, ss 4.6.2.2, 6.2.1.3, 11.4.5
- endurance time tests, Type I – relation to HOT, Foreword at p 1, s 1.2

66
endurance time tests, Type I – report, s 4.7.4
endurance time tests, Type I – sample selection, ss 1.1, 1.4.2, 1.4.3, 3
endurance time tests, Type I – sample, sheared, ss 3.2.2, 3.2.3, 3.3.1, 3.3.2, 3.4.3
endurance time tests, Type I – snow form excludes: graupel (soft hail), s 11.4.6
endurance time tests, Type I – snow form excludes: hail, s 11.4.6
endurance time tests, Type I – snow form excludes: ice pellets, s 11.4.6
endurance time tests, Type I – snow form excludes: soft hail (graupel), s 11.4.6
endurance time tests, Type I – snow form includes: capped columns, s 11.4.6
endurance time tests, Type I – snow form includes: columns, s 11.4.6
endurance time tests, Type I – snow form includes: irregular particles, s 11.4.6
endurance time tests, Type I – snow form includes: needles, s 11.4.6
endurance time tests, Type I – snow form includes: plates, s 11.4.6
endurance time tests, Type I – snow form includes: snow grains, s 11.4.6
endurance time tests, Type I – snow form includes: spatial dendrites, s 11.4.6
endurance time tests, Type I – snow form includes: stellar crystals, s 11.4.6
endurance time tests, Type I – snow grains, s 11.4.6
endurance time tests, Type I – snow, laboratory – shorter time than natural snow, Foreword at p1
endurance time tests, Type I – snow, laboratory – snow distribution systems, ss 10.1.5, 10.1.6, 10.1.7
endurance time tests, Type I – snow, laboratory – snow sources, ss 10.4.1, 10.4.2
endurance time tests, Type I – snow, laboratory, s 10
endurance time tests, Type I – snow, natural, s 11
endurance time tests, Type I – temperature, lowest test, ss 3.4.2, 12.3
endurance time tests, Type I – test facility, ss 1.5.1, 4.4, 4.6.2.4, 4.7.4
endurance time tests, Type I – test facility/site – independence from fluid manufacturer, s 1.5.1
endurance time tests, Type I – test facility/site, role of, s 1.4.2
endurance time tests, Type I – test plate cleanliness, s 4.7.1
endurance time tests, Type I – testing agent – independence from fluid manufacturer, s 1.4.1
endurance time tests, Type I – testing agent duties, ss 1.4.2, 3.2, 3.3
endurance time tests, Type I – testing agent, role of, ss 1.4.2, 3.2, 3.3,
endurance time tests, Type I – variability across test plates, ss 4.6.3, 4.7.4, 6.2.2, 7.2.2, 8.2.2, 9.2.2, 10.2.5
endurance time tests, Type I – water droplet size – dye stain method, s 4.6.5d
endurance time tests, Type I – water droplet size – laser diffraction method, s 4.6.5c
endurance time tests, Type I – water droplet size – slide impact method with colloidal silver, s 4.6.5b
endurance time tests, Type I – water droplet size – slide impact method with oil, s 4.6.5a
endurance time tests, Type I – water hardness, s 4.5.6
endurance time tests, Type I – WSET check on sheared sample, ss 3.2.2, 3.2.3, 3.3.1, 3.3.2
endurance time tests, Type I, Title at p 1, Rationale at p 1, s 3 ETH
eylene glycol based Type I – endurance time tests not required, ss 1.1. 3.1
failure mode, endurance time – visual, Foreword at p 1
failure, plate – 30% coverage with frozen contamination, s 4.7.2
failure, plate. See also frozen contamination – appearance
fluid manufacturer documentation. See also endurance time tests, Type I – fluid manufacturer documentation
fluid, supercooled. See crystallization, delayed
frozen contamination – appearance – frost on treated surface, s 4.7.2
frozen contamination – appearance – ice crystals, disseminated, s 4.7.2
frozen contamination – appearance – ice front, s 4.7.2
frozen contamination – appearance – ice pieces imbedded in fluid, s 4.7.2
frozen contamination – appearance – ice pieces partially imbedded in fluid, s 4.7.2
frozen contamination – appearance – ice sheet, s 4.7.2
frozen contamination – appearance – slush front, s 4.7.2
frozen contamination – appearance – slush in clusters, s 4.7.2
frozen contamination – appearance – snow bridges, s 4.7.2
Guide to Aircraft Ground Deicing – Issue 6

non-glycol based Type I – endurance time tests required, ss 1.1, 3.1
propylene glycol based Type I – endurance time tests not required, ss 1.1, 3.1
regression analysis method – icing intensity, ss 4.6.2.2, 6.2.1.3
regression analysis method for icing intensity measurement, Type I, ss 4.6.2.2, 6.2.1.3
SAE G-12 HOT, role of, s 1.2
supercooled fluid. See crystallization, delayed.
Type I failure criteria, ss Foreword at p 1, 4.7.2, 4.7.3, 6.4.7, 10.4.6, 12.4.4
water droplet size – dye stain method, s 4.6.5d
water droplet size – laser diffraction method, s 4.6.5e
water droplet size – slide impact method with colloidal silver, s 4.6.5b
water droplet size – slide impact method with oil, s 4.6.5a

ARP5718B Qualifications Required for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids

Revised 2017-12-07 by SAE G-12 HOT.

In its version B, the document name changed. The version A name was ARP5718A Process to Obtain Holdover Times for Aircraft Deicing/Anti-Icing Fluids, SAE AMS1428 Types II, III, and IV.

The purpose of ARP5718B is to explain to fluid manufacturers and users, at a high level, the steps required for an experimental fluid i) to become a commercially useable fluid, ii) to obtain allowance and holdover times, and iii) to be listed on the FAA and Transport Canada list of fluids.

Meeting all of the technical requirements of AMS1428 is insufficient for a Type II, III or IV de/anti-icing fluid to be used on an aircraft. For such a fluid to be used commercially, it must be associated to holdover time guideline and be identified on a list of fluids published by the FAA and Transport Canada. It is further recommended that a field spray trial be conducted with the fluid to demonstrate acceptable operational performance.

ARP5718B a) describes the preparatory steps to test an experimental fluid according to AMS1428, b) advises fluid manufacturers on sample selection issues, particularly in selecting viscosity parameters for experimental fluids, c) offers a short description of wind tunnel testing for obtaining data to generate allowance times, d) provides a suggested protocol for field spray testing, e) details the protocol used to generate holdover time guidelines form endurance time data, including the format of the holdover time tables, e) explains the process for inclusion and exclusion of fluids on the FAA/Transport Canada list of fluids, f) describes the role of the SAE G-12 ADF and HOT
Committees and g) the publication process for the Type III/IV allowance and Type II/III/IV holdover time guidelines.

Its sister document for AMS1424 Type I fluids is ARP6207 Qualifications Required for SAE Type I Aircraft Deicing/Anti-icing Fluids.

Keywords:
aerodynamic acceptance – definition, s 2.3
aircraft manufacturer documentation – list fluid types allowed on aircraft, footnote 1 at p 1
allowance time – definition, s 2.3
allowance time – failure mode – aerodynamic and visual, s 2.3
allowance time – wind tunnel testing, ss 3.4.1, 3.4.2, 3.4.3
allowance time. See also wind tunnel testing
allowance time, preparation of Type II/IV – sample selection, s 3.4.3
allowance time, preparation of Type III/IV – precipitation categories – ice pellets and small hail, s 5.1.1f
allowance time, preparation of Type III/IV – precipitation categories – mixed ice pellets, s 5.1.1f
AMIL gel residue tables55, s 3.2.3
AMIL residue tables. See AMIL gel residue tables
AMS1428, purpose of – minimum requirements for Type II/II/IV fluids, s 3.2.1
AMS1428/1, purpose of – identity of freezing point depressant, s 3.2.1
AMS1428/2, purpose of – identity of freezing point depressant, s 3.2.1
bleed-through. See color bleed-through
color bleed-through – definition, s 4.3
color bleed-through, evaluation of, s 4.3
color intensity, evaluation of – field spray test, s 4.3c
definition – aerodynamic acceptance, s 2.3
definition – allowance time, s 2.3
definition – bleed-through, s 4.3c
definition – endurance time, s 2.3
definition – FAA/Transport Canada list of fluids. See definition – list of fluids, FAA/Transport Canada
definition – highest useable precipitation rate. See definition – HUPR
definition – HOT guideline, s 2.3
definition – HOT guideline, fluid-specific, s 2.3
definition – HOT guideline, generic, ss 2.3, 5.8
definition – HOT table. See definition – HOT guideline
definition – HOT, s 2.3
definition – HUPR, s 2.3
definition – list of fluids, FAA/Transport Canada, s 2.3
definition – LOUT, Type II/III/IV, s 2.3
definition – lowest useable precipitation rate. See definition – LUPR
definition – LOWV, ss 2.3, 3.3.2
definition – LUPR, s 2.3
definition – precipitation rate, highest useable. See definition – HUPR

55 AMIL, “Anti-icing Fluids Gel Residue Testing Results”, online: <http://amillaboratory.ca/aircraft-deanti-icing-fluids/aaa/>. Type II/III/IV upon evaporation may leave residue on aircraft surface, particularly in aerodynamically quiet areas. The residues may upon rehydration form gels that are susceptible to freezing and which may hinder the movement of critical parts of the aircraft. Different Type II/III/IV fluids have different propensity to form such residues. AMIL conducted a study where several fluids were tested for the propensity for form rehydrated residues. The results are published online.
definition – precipitation rate, lowest useable. See definition – LUPR
definition – viscosity limit, lower sales specification, s 2.3
definition – WSET, s 2.3
endurance time – definition, s 2.3
endurance time – limits in natural snow, s 5.5
endurance time – LUPR and HUPR analysis, s 5.5.2
endurance time tests, Type II/III/IV – sample selection, s 3.3.2
FAA/Transport Canada list of fluids. See list of fluids, FAA/Transport Canada
failure mode, allowance time – aerodynamic and visual, s 2.3
failure mode, endurance time – visual, s 2.3
failure mode, HOT – visual, s 2.3
field spray test. See spray test, field
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV (licensee location) – initial qualification test report – aerodynamic acceptance, s 5.7.5
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV (licensee location) – initial qualification test report – WSET, s 5.7.5
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV (licensee location) – original qualification test data, s 5.7.5
fluid manufacturer – obligation to provide to FAA/TC – additional requested data, s 5.9.4
fluid manufacturer – obligation to provide to FAA/TC – data – general obligation, s 5.9
fluid manufacturer – obligation to provide to FAA/TC – deadlines, ss 5.6, 5.9.2, 5.9.3, 9
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV – list of fluids to be commercialized by June 01, ss 5.9.1, 9
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV – periodic requalification test report – aerodynamic acceptance, ss 5.9.3, 5.9.3.1, 5.9.3.2
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV – periodic requalification test report – anti-icing performance, ss 5.9.3, 5.9.3.1, 5.9.3.2
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV – restrictions on use of, s 5.2
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV – periodic requalification test report – multiple locations56
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – initial qualification test report – aerodynamic acceptance, high speed, ss 5.9.2, 5.9.2.1
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – initial qualification test report – anti-icing performance, ss 5.9.2, 5.9.2.1
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – freezing point data, 5.9.2, 5.9.2.1
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – endurance time data, s 3.3
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – unique name, s 5.6
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – final name by May 01, s 5.6
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – initial qualification test report – aerodynamic acceptance, low speed, ss 5.9.2, 5.9.2.2
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – initial qualification test report – aerodynamic acceptance, high speed (optional), ss 5.9.2, 5.9.2.2
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – initial qualification test report – anti-icing performance, ss 5.9.2, 5.9.2.2
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – endurance time data, s 3.3
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – initial qualification test report – freezing point data 5.9.2, 5.9.2.2

56 The requirement for fluid manufacturers to provide data for each manufacturing location was an explicit requirement of s 5.7.3 of ARP5718A. The section 5.7.3 became section 5.9.3 in ARP5718B but the sentence requiring the provision of data for each manufacturing location is no longer present in that section. We believe it is an implicit obligation as there is not statement excluding multiple sites from reporting.
Aircraft Deicing Documents – Issued by the G-12 Holdover Time Committee

fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – to be used heated, not heated or both, s 5.2
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – unique name, s 5.6
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – final name by May 01, s 5.6
fluid manufacturer – option not to publish fluid-specific HOT, s 5.7.1
fluid manufacturer – sample selection considerations, Type II/III/IV, ss 3.2.2, 3.3.2
fluid manufacturer licensee – fluid-specific HOT guideline, s 5.7.5
fluid name – final commercial name, s 5.6
fluid name – formulation change, upon, s 5.6
fluid name – new unique name, s 5.6
fluid name – reformulation, s 5.6
fluid name, s 5.6
fluid residue table, s 3.2.3
fluid retesting, s 5.7.4
fluid, list of. See list of fluids
fluid, new – development of fluid-specific HOT, s 5.7
fluid, new – new unique name, mandatory, s 5.6
fluid, new – obligation to provide information to FAA/TC, s 5.9
fluid-specific HOT guidelines. See HOT, fluid-specific
foam, tendency to – field spray test, s 4.3a
formulation change – name change, s 5.6
freezing point buffer – Type II/III/IV – 7°C, s 2.3
gel residue table, AMIL, s 3.2.3
generic HOT guidelines. See HOT, generic
high viscosity pre-production sample – MOWV, s 3.2.2
HOT – definition, s 2.3
HOT – failure mode – visual, s 2.3
HOT guideline – definition, s 2.3
HOT guideline – validity – LOWV, ss 2.3, 5.7.2
HOT guideline, fluid-specific – definition, s 2.3
HOT guideline, generic – definition, s 2.3
HOT guideline, publication date for, s 9
HOT table synonym for HOT guideline, s 2.3
HOT values, capping of. See HOT, preparation of Type II/III/IV – HOT values, capping of
HOT values, rounding of. See HOT, preparation of Type II/III/IV – HOT values, rounding of
HOT, preparation of Type II – generic – to exclude Type IV data, s 5.8
HOT, preparation of Type II/III/IV – cautions – HOT reduced – jet blast, s 5.1.5 b
HOT, preparation of Type II/III/IV – cautions – HOT reduced – aircraft skin temperature lower than OAT, s 5.1.5 c
HOT, preparation of Type II/III/IV – cautions – HOT reduced – high winds, s 5.1.5b
HOT, preparation of Type II/III/IV – cautions – no inflight-protection, s 5.1.5d
HOT, preparation of Type II/III/IV – cautions – protection time shortened – heavy weather, 5.1.5a
HOT, preparation of Type II/III/IV – cautions – protection time shortened – heavy precipitation rates, s 5.1.5a
HOT, preparation of Type II/III/IV – cautions – protection time shortened – high moisture content, s 5.1.5a
HOT, preparation of Type II/III/IV – cautions, s 5.1.5
HOT, preparation of Type II/III/IV – cells, s 5.1.3
HOT, preparation of Type II/III/IV – date of issue, s 5.1.6
HOT, preparation of Type II/III/IV – date of obsolescence, s 5.1.6
HOT, preparation of Type II/III/IV – date of revision, s 5.1.6
HOT, preparation of Type II/III/IV – fluid product names, s 5.6
HOT, preparation of Type II/III/IV – fluid retesting, s 5.7.4
HOT, preparation of Type II/III/IV – fluid-specific – licensee, s 5.7.5
HOT, preparation of Type II/III/IV – fluid-specific – manufacturer option not to publish, s 5.7.1
HOT, preparation of Type II/III/IV – format, s 5.1
HOT, preparation of Type II/III/IV – generic, s 5.8
HOT, preparation of Type II/III/IV – HOT values from endurance time data, ss 3.3.1, 5.4
HOT, preparation of Type II/III/IV – HOT values range, s 5.1.3
HOT, preparation of Type II/III/IV – HOT values, capping of, s 5.4.2
HOT, preparation of Type II/III/IV – HOT values, rounding of, s 5.4.1
HOT, preparation of Type II/III/IV – new fluids, s 5.10
HOT, preparation of Type II/III/IV – notes, s 5.1.4
HOT, preparation of Type II/III/IV – obsolete data, removal of, s 5.11
HOT, preparation of Type II/III/IV – precipitation categories – freezing fog or ice crystals, s 5.1.1a
HOT, preparation of Type II/III/IV – precipitation categories – freezing drizzle, s 5.1.1c
HOT, preparation of Type II/III/IV – precipitation categories – frost, active s 5.1.1f
HOT, preparation of Type II/III/IV – precipitation categories – light freezing rain, s 5.1.1d
HOT, preparation of Type II/III/IV – precipitation categories – rain on cold soaked wing, s 5.1.1e
HOT, preparation of Type II/III/IV – precipitation categories – snow, snow grains or snow pellets, s 5.1.1b
HOT, preparation of Type II/III/IV – precipitation categories, s 5.1.1
HOT, preparation of Type II/III/IV – removal of obsolete fluid data, s 5.11
HOT, preparation of Type II/III/IV – sample selection – fluid manufacturer considerations, ss 3.2.2, 3.2.3, 3.3.2
HOT, preparation of Type II/III/IV – sample selection, ss 3.2.2, 3.2.3, 3.3.2
HOT, preparation of Type II/III/IV – temperature ranges, s 5.1.2
HOT, preparation of Type II/III/IV – timeline, s 9
HOT, preparation of Type III – generic – none published, s 5.8
HOT, preparation of Type IV – generic – to exclude Type II data, s 5.8
HOT, validity of – LOWV s 5.7.2
HOWV – definition, s 2.3
HOWV – manufacturer consideration in selecting sample for high viscosity pre-production sample, s 3.2.2
HOWV – relation to high viscosity pre-production sample, s 3.2.2
HUPR – definition, s 2.3
HUPR – purpose – sets limit for light and very light natural snow, s 5.5.1a
HUPR – purpose – sets limit for LWE systems, s 5.5.1b
list of fluids, FAA/Transport Canada – addition of new fluid, s 5.10
list of fluids, FAA/Transport Canada – definition, s 2.3
list of fluids, FAA/Transport Canada – fluid expiry dates, s 5.10c
list of fluids, FAA/Transport Canada – fluid manufacturer deadline to provide data– June 01, s 9
list of fluids, FAA/Transport Canada – obsolete data, removal of, ss 5.10b, 5.11
list of fluids, FAA/Transport Canada – publication process, ss 5.10, 5.11, 8
list of fluids, FAA/Transport Canada – publication timeline, s 9
LOUT, Type II/III/IV – definition, s 2.3
lower sales specification viscosity limit. See viscosity limit, lower sales specification
LOWV – definition, ss 2.3, 3.3.2
LOWV – HOT validity, s 5.7.2
LOWV – lower than lower sales specification viscosity limit, s 2.3, 5.7.2
LOWV – manufacturer considerations in selecting sample for endurance testing, s 3.3.2
LUPR – definition, s 2.3
LUPR – purpose – sets limit for light and very light natural snow, s 5.5.1a
LUPR – purpose – sets limit for LWE systems, s 5.5.1b
LUPR and HUPR calculations, s 5.5.2
name. See fluid name
new fluid. See fluid, new
precipitation rate, highest useable. See HUPR
precipitation rate, lowest useable. See LUPR
product name. See fluid name
residues, gel – AMIL gel residue tables, s 3.2.3
residues, presence of – field spray test, s 4.3e.
SAE G-12 ADF mid-year meeting timeline, s 9
SAE G-12 ADF, role of, ss 6. 7.3
SAE G-12 annual meeting timeline, s 9
SAE G-12 HOT agenda items, mandatory, s 7.3
SAE G-12 HOT co-chairs, s 7
SAE G-12 HOT mid-year meeting timeline, s 9
SAE G-12 HOT, role of, s 7
spray test, field – color bleed-through, evaluation of, s 4.3c
spray test, field – color intensity, evaluation of, s 4.3c
spray test, field – flow, evaluation of, s 4.3b
spray test, field – foam, tendency to, s 4.3a
spray test, field – protocol, s 4.3
spray test, field – reason for, s 4.1
spray test, field – report, s 4.4
spray test, field – residues, presence of, s 4.3e
spray test, field – tendency to foam, evaluation of, s 4.3
spray test, field – viscosity of nozzle samples, s 4.3
spray test, field – viscosity of pre-nozzle samples, s 4.3
spray test, field, Foreword at p 1, s 4, see footnote 58
spray trial, field. See spray test, field
Transport Canada/FAA list of fluids. See list of fluids, FAA/Transport Canada
Type II/III/IV – field spray test57, Foreword at p 1, ss 1d, 4
Type II/III/IV – fluid residue table, AMIL, s 3.2.3
Type II/III/IV – gel residue table, AMIL, s 3.2.3
Type II/III/IV – sample selection considerations, ss 3.2.2, 3.2.3
Type II/III/IV – sample selection. See also HOT, process to obtain – sample selection
Type II/III/IV – use on aircraft. See Type II/III/IV commercialization condition
Type II/III/IV commercialization condition – AMS1428 technical requirements, meet the, Foreword at p 1
Type II/III/IV commercialization condition58 – FAA/Transport Canada list of fluids, be on the, Foreword at p 1
Type II/III/IV commercialization condition – field spray test, Foreword at p 1
Type II/III/IV commercialization condition – HOT guideline, have a, Foreword at p 1
Type II/III/IV decision to commercialize, ss 5.6, 5.7.1
Type II/III/IV manufacturer. See fluid manufacturer
Type II/III/IV name change upon reformulation, s 5.6
Type II/III/IV name, experimental, s 5.6
Type II/III/IV name, final commercial – date due May 01, s 5.6
Type II/III/IV name, new, s 5.6
Type II/III/IV qualification. See ARP5718B
Type II/III/IV residue table, AMIL, s 3.2.3
Type II/III/IV sample selection considerations, ss 3.2.2, 3.2.3, 3.3.2, 3.4.3
upper sales specification viscosity limit. See viscosity limit, upper sales specification
viscosity limit, lower sales specification – definition, s 2.3
viscosity limit, lower sales specification – higher than LOWV, ss 2.3, 5.7.2
viscosity limit, upper sales specification – definition, s 2.3

57 Field spray trial (p 1) and field spray test (s 4.1) appear to be used interchangeably in ARP5718B.
58 There are four conditions to commercialize an SAE Type II/III/IV fluid, the first three are mandatory, the fourth one is highly recommended: 1) meet the technical requirements of AMS1428, 2) be identified on the FAA/Transport Canada list of fluids and 3) have a holdover time guideline published by the FAA/Transport Canada and 4) running a field spray test to demonstrate operational performance (see ARP5718B p 1).
viscosity limit, upper sales specification – lower than HOWV, s 2.3
viscosity, high preproduction sample, s 3.2.2
viscosity, highest on-wing viscosity. See HOWV
viscosity, lowest on-wing. See LOWV
viscosity, maximum on-wing. See HOWV
wind tunnel – sample selection, s 3.4.3
wind tunnel testing – frequency, s 3.4.2
wind tunnel testing – purpose – establish allowance time, s 3.4.1
wind tunnel testing – purpose – simulate ice pellet conditions, s 3.4.1
wind tunnel testing – Type III/IV neat only, s 3.4.1
WSET – definition, s 2.3

ARP5485B Endurance Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids

Revised 2017-10-10 by SAE G-12 HOT.

ARP5485B provides the sample selection and endurance time test procedures, for SAE Type II, III, and IV aircraft deicing/anti-icing fluids, required for the generation of endurance time data of acceptable quality for review by the SAE G-12 HOT. Specifically, ARP5945B describes laboratory endurance procedure testing for freezing fog, freezing drizzle, light freezing rain, rain on cold soaked wing, and snow (two methods, NCAR/APS Aviation method and the AMIL method). It describes natural outdoor procedures for snow and frost.

Snow tests can be performed by three methods: 1) outdoors with natural snow, 2) indoors with artificial snow or collected natural snow, storing the artificial snow or collected natural snow, and distributing either systematically over the test plates or 3) indoors with artificial snow made as the test is being performed. Artificial snow is made by a) spraying fine water droplets in a cold chamber resulting in fine solid ice crystals that are collected on the cold chamber floor (used in method 2) or b) shaving ice cores into ice shavings with a so-called snowmaker (used in method 3). Outdoor tests are performed under uncontrolled weather conditions, which means all desired temperature/snow precipitation rate combinations may not be tested during a given winter; indoor tests are performed under controlled conditions.

59 See footnote 5
60 The collected snow and subsequent distribution method was developed at AMIL.
61 The instantaneous shaving core snowmaker method was developed at NCAR and extensively used by APS Aviation.
Its sister document for AMS1424 Type I fluids is ARP5945A whose title is *Endurance Time Test Procedures for SAE Type I Aircraft Deicing/Anti-Icing Fluids*.

Keywords:
crystallization, delayed, s 4.7.3
definition – endurance time, Foreword at p 1
duration time – definition, Foreword at p 1
duration time tests, Title at p 1
duration time tests, Type II/III/IV – data examination by SAE G-12 HOT, Foreword at p 1, ss 1.1,1.2
duration time tests, Type II/III/IV – data validation by SAE G-12 HOT, Foreword at p 1, ss 1.1,1.2
duration time tests, Type II/III/IV – delayed crystallization, s 4.7.3
duration time tests, Type II/III/IV – failure mode – visual, Foreword at p 1
duration time tests, Type II/III/IV – failure mode, snow – dilution, s 10.4.6
duration time tests, Type II/III/IV – failure mode, snow – snow-bridging, s 10.4.6
duration time tests, Type II/III/IV – failure, frozen contamination – 30% area, s 4.7.2
duration time tests, Type II/III/IV – failure, frozen contamination – appearance, s 4.7.2
duration time tests, Type II/III/IV – failure, snow – 30% area or non-absorption over 5 crosshairs, s 10.4.6
fluid manufacturer documentation. See also duration time tests, Type II/III/IV – fluid manufacturer documentation
duration time tests, Type II/III/IV – fluid manufacturer documentation – freezing point data, s 3.2.5c
duration time tests, Type II/III/IV – fluid manufacturer documentation – color, s 3.2.5a
duration time tests, Type II/III/IV – fluid manufacturer documentation – refractive index data, s 3.2.5a
duration time tests, Type II/III/IV – fluid manufacturer documentation – safety data sheet, s 3.2.5c
duration time tests, Type II/III/IV – fluid manufacturer documentation – viscosity, s 3.2.5b
duration time tests, Type II/III/IV – fluid manufacturer documentation – viscosity method, s 3.2.5b
duration time tests, Type II/III/IV – fluid manufacturer documentation – freezing point depressant, s 3.2.5c
duration time tests, Type II/III/IV – fluid manufacturer documentation – test name, s 3.2.5a
duration time tests, Type II/III/IV – fluid manufacturer documentation – freezing point data, s 3.2.5c
duration time tests, Type II/III/IV – fluid manufacturer documentation – dilutions to be tested, s 3.2.5c
duration time tests, Type II/III/IV – fog, freezing, s 6
duration time tests, Type II/III/IV – freezing drizzle, s 7
duration time tests, Type II/III/IV – freezing fog, s 6
duration time tests, Type II/III/IV – frost, laboratory s 5
duration time tests, Type II/III/IV – frost, natural s 12
duration time tests, Type II/III/IV – ice crystal seeding, s 4.7.3
duration time tests, Type II/III/IV – icing intensity measurements, s 4.6.2
duration time tests, Type II/III/IV – icing intensity measurements by regression analysis, s 4.6.2.2
duration time tests, Type II/III/IV – icing intensity measurements with reference ice-catch plates, s 4.6.2.1
duration time tests, Type II/III/IV – light freezing rain, s 8
duration time tests, Type II/III/IV – manufacturer’s mandatory documentation, s 3.1.5
duration time tests, Type II/III/IV – purpose, Foreword at p 1, s 1.1
duration time tests, Type II/III/IV – rain on cold soaked wing, s 9
duration time tests, Type II/III/IV – regression analysis, s 4.6.2.2
duration time tests, Type II/III/IV – relation to HOT, Foreword at p 1, s 1.2
duration time tests, Type II/III/IV – sample – viscosity reduced subsequent to manufacturing, s 3.1.1
duration time tests, Type II/III/IV – sample – without shearing, ss 3.1.3, 3.2.1
duration time tests, Type II/III/IV – sample selection – viscosity reduction by manufacturer, s 3.3.1
duration time tests, Type II/III/IV – sample selection, s 3.1
duration time tests, Type II/III/IV – sample viscosity, s 3.1.4
duration time tests, Type II/III/IV – snow form excludes: graupel (soft hail), s 11.4.6
duration time tests, Type II/III/IV – snow form excludes: hail, s 11.4.6
duration time tests, Type II/III/IV – snow form excludes: ice pellets, s 11.4.6
endurance time tests, Type II/III/IV – snow form excludes: soft hail (graupel), s 11.4.6
endurance time tests, Type II/III/IV – snow form includes: capped columns, s 11.4.6
endurance time tests, Type II/III/IV – snow form includes: columns, s 11.4.6
endurance time tests, Type II/III/IV – snow form includes: irregular particles, s 11.4.6
endurance time tests, Type II/III/IV – snow form includes: needles, s 11.4.6
endurance time tests, Type II/III/IV – snow form includes: plates, s 11.4.6
endurance time tests, Type II/III/IV – snow form includes: snow grains, s 11.4.6
endurance time tests, Type II/III/IV – snow form includes: spatial dendrites, s 11.4.6
endurance time tests, Type II/III/IV – snow form includes: stellar crystals, s 11.4.6
endurance time tests, Type II/III/IV – snow grains, s 11.4.6
endurance time tests, Type II/III/IV – snow, artificial – made by shaving ice cores ss 10, 10.1.7
endurance time tests, Type II/III/IV – snow, artificial – made by spraying water in a cold chamber, ss 10.1.6.3, 10.1.6.4
endurance time tests, Type II/III/IV – snow, artificial – test, indoor – with storage and distribution, ss 10, 10.1.6
endurance time tests, Type II/III/IV – snow, artificial – test, indoor – without storage, ss 10, 10.1.7
endurance time tests, Type II/III/IV – snow, laboratory, s 10
endurance time tests, Type II/III/IV – snow, natural – test, outdoor, s 11
endurance time tests, Type II/III/IV – snow, natural, s 11
endurance time tests, Type II/III/IV – test facility/site – independence from fluid manufacturer, s 1.5.1
endurance time tests, Type II/III/IV – test facility/site, s 1.5
endurance time tests, Type II/III/IV – test plate cleanliness, ss 4.7.1, 11.4.1
endurance time tests, Type II/III/IV – testing agent – independence from fluid manufacturer, s 1.4.1
endurance time tests, Type II/III/IV – testing agent role/duties, ss 1.4.2, 3.2
endurance time tests, Type II/III/IV – variability across test plates, s 4.6.3
endurance time tests, Type II/III/IV – viscosity check on unsheared sample, s 3.2.2
endurance time tests, Type II/III/IV – viscosity reduction by manufacturer, s 3.3.1
endurance time tests, Type II/III/IV – water droplet size – dye stain method, s 4.6.5d
endurance time tests, Type II/III/IV – water droplet size – laser diffraction method, s 4.6.5c
endurance time tests, Type II/III/IV – water droplet size – slide impact method with colloidal silver, s 4.6.5b
endurance time tests, Type II/III/IV – water droplet size – slide impact method with oil, s 4.6.5a
endurance time tests, Type II/III/IV – water hardness, nozzles, s 4.5.6
endurance time tests, Type II/III/IV – WSET check on unsheared sample, s 3.2.1
endurance time tests, Type II/III/IV, Title at p 1
endurance time tests, Type III – fluid manufacturer documentation – intended method of use, s 3.2.5
frozen contamination – appearance – frost on treated surface, s 4.7.2
frozen contamination – appearance – ice crystals, disseminated, s 4.7.2
frozen contamination – appearance – ice front, s 4.7.2
frozen contamination – appearance – ice pieces imbedded in fluid, s 4.7.2
frozen contamination – appearance – ice pieces partially imbedded in fluid, s 4.7.2
frozen contamination – appearance – ice sheet, s 4.7.2
frozen contamination – appearance – slush front, s 4.7.2
frozen contamination – appearance – slush in clusters, s 4.7.2
frozen contamination – appearance – snow bridges, s 4.7.2
regression analysis method – icing intensity, s 4.6.2.2
regression analysis method for icing intensity measurements, Type II/III/IV, s 4.6.2.2
Type II/III/IV failure criteria, ss 4.7.2, 11.4.6
water droplet size – dye stain method, s 4.6.5d
water droplet size – laser diffraction method, s 4.6.5c
water droplet size – slide impact method with colloidal silver, s 4.6.5b
water droplet size – slide impact method with oil, s 4.6.5a
AS5681B Minimum Operational Performance Specification for Remote On-Ground Ice Detection Systems

AS5681B issued 2016-05-17 by SAE G-12 Ice Detection, now part of SAE G-12 HOT.

AS5681B specifies the minimum operational performance specification (MOPS) of remote on-ground ice detection systems (ROGIDS). ROGIDS are ground-based systems that indicate whether frozen contamination is present on aircraft surfaces.

ROGIDS are intended to be used during aircraft ground deicing operations to inform ground crews or flight crews about the condition of the aircraft.

AS5681B presents a functional description of ROGIDS, design requirements, minimum performance requirements, laboratory tests conditions to evaluate the ROGIDS, recommended test procedure to demonstrate compliance with the minimum requirements and operational evaluation requirements to verify the performance of in-service ROGIDS.

Keywords:
accident rate, aircraft ground icing catastrophic, s D.4.1
accidents, aircraft ground icing – categories – detected frozen contamination but ignored, s D.3.1
accidents, aircraft ground icing – categories – fluid failure after deicing, s D.3.1
accidents, aircraft ground icing – categories – undetected frozen contamination, s D.3.1
accidents, aircraft ground icing – categories – undetected frozen contamination after deicing, s D.3.1
accidents, aircraft ground icing – historical data, ss D.3.1, D.4, D.5
anti-icing – definition, s 2.2.1
check, post-deicing. See post deicing/anti-icing check
clear ice – definition, s 2.2.1
clear ice occurrence – inflight, s 2.2.1
clear ice occurrence – on the ground, s 2.2.1
clear ice, detection of – ROGIDS, s 1.3
clear ice, detection of – ROGIDS as supplement to tactile pre-deicing check, s 1.3
clear ice, detection of – ROGIDS as supplement to visual pre-deicing check, s 1.3
clear ice, detection of – ROGIDS detection threshold, s 4.1.1
clear ice, detection of – ROGIDS v tactile check, Foreword at par 3 at p 1
clear ice, detection of – ROGIDS v visual check, Foreword at par 3 at p 1
clear ice, difficulty to detect s 2.2.1
clear ice, undetected – probability estimate, s D.4.1
contaminant, frozen. See frozen contamination
contamination, frozen. See frozen contamination
critical ice contamination – definition, s D.3.2
critical ice contamination rate, s D.4.1
definition – anti-icing, s 2.2.1
definition – check, pre-deicing, s 2.2.1
definition – clear ice, s 2.2.1
definition – critical ice contamination, s D.3.2
Guide to Aircraft Ground Deicing – Issue 6

definition – deicing event, s 2.2.1
definition – deicing, s 2.2.1
definition – failure, latent, s 2.2.1
definition – fluid failure, s 2.2.1
definition – frozen contamination, s 2.2.1
definition – ice contamination, critical, s D.3.2
definition – illuminance, s 2.2.2
definition – ROGIDS detection angle, maximum, s 2.2.1
definition – ROGIDS detection angle, minimum, s 2.2.1
definition – ROGIDS detection distance, maximum, s 2.2.1
definition – ROGIDS detection distance, minimum, s 2.2.1
definition – ROGIDS false negative, s 2.2.1
definition – ROGIDS false positive, s 2.2.1
definition – ROGIDS, s 2.2.1
definition – system, s 2.2.1
deicing – definition, s 2.2.1
deicing event – definition, s 2.2.1
deicing events – historical data 1985-2005, s D.3.1
deicing events – worldwide estimate 1985-2005, s D.3.1
failed fluid. See fluid failure
failure, deicing/anti-icing fluid. See fluid failure
failure, fluid. See fluid failure
failure, latent – definition, s 2.2.1
failure, latent, ss 2.2.1, 3.7.2,
failure, undetected. See failure, latent
fluid failure – definition, s 2.2.1
fluid failure description – adherence of frozen contamination, s 2.2.1
fluid failure description – dulling of surface reflectivity, s 2.2.1
fluid failure description – no absorption of precipitation, s 2.2.1
fluid failure description – presence of frozen contamination in the fluid, s 2.2.1
fluid failure description – presence of frozen contamination on the fluid, s 2.2.1
fluid failure description – snow accumulation, random, s 2.2.1
fluid failure description – snow accumulation, s 2.2.1
fluid failure description – surface freezing, s 2.2.1
fluid failure description, s 2.2.1
frost, detection of – ROGIDS less reliable than visual check, Foreword at par 4 at p 1
frost, detection of – ROGIDS v visual check, Foreword at par 4 at p 1
frozen contaminant62. See frozen contamination
frozen contamination – definition, s 2.2.1
ice contamination, critical – definition, s D.3.2
ice contamination, critical – probability estimate, s D.4.2
ice detection system, remote on-ground. See ROGIDS
ice, clear. See clear ice
illuminance – definition, s 2.2.2
remote on-ground ice detection system. See ROGIDS
ROGIDS – definition, s 2.2.1
ROGIDS alternative to tactile post deicing/anti-icing check, s 1.3
ROGIDS alternative to visual post deicing/anti-icing check, s 1.3
ROGIDS approval by regulator, ss 1.1, 1.3
ROGIDS approval for post deicing/anti-icing check, s 1.3
ROGIDS approval for pre-deicing check, s 1.3

62 Frozen contaminants and frozen contamination are generally used as synonyms.
ROGIDS clear ice detection v tactile check, Foreword at par 3 at p 1
ROGIDS design requirement, s 3
ROGIDS detection angle, maximum – definition, s 2.2.1
ROGIDS detection angle, minimum – definition, s 2.2.1
ROGIDS detection distance, maximum – definition, s 2.2.1
ROGIDS detection distance, minimum – definition, s 2.2.1
ROGIDS detection of clear ice – detection threshold, s 4.1.1
ROGIDS detection of clear ice pre-deicing, s 4.1
ROGIDS detection of frost – below reliable detection threshold, Foreword par 3 at p 1
ROGIDS detection of frost – undefined, s 4.1
ROGIDS detection of residual clear ice post-deicing during precipitation, s 4.1
ROGIDS detection of residual clear ice post-deicing, s 4.1
ROGIDS detection of slush – undefined, s 4.1
ROGIDS detection of snow – undefined, s 4.1
ROGIDS detection threshold, s 4.1.1
ROGIDS false negative – definition, s 2.2.1
ROGIDS false positive – definition, s 2.2.1
ROGIDS frost detection v visual check, Foreword at par 4 at p 1
ROGIDS functional description – clear ice detection, s 1.3
ROGIDS human factors tests, Foreword at par 3-4 at p 1
ROGIDS latent failure rate, ss 2.2.1, 3.7.2, D.3.2
ROGIDS minimum operational performance specification, Title at p 1, ss 1, 1.1, 4
ROGIDS minimum performance specification, s 4
ROGIDS monitored surface – definition, s 2.2.1
ROGIDS MOPS, Title at p 1, ss 1, 1.1, 4
ROGIDS performance specification in environmental test conditions, minimum, s 5
ROGIDS performance specification, minimum, s 4
ROGIDS performance, minimum operational, s 6
ROGIDS regulatory requirements, ss 1.1, 1.3
ROGIDS v human inspection, s D.3.1
ROGIDS, effect of fluid foam on, s 4.3
ROGIDS, hand held, s 1.3
ROGIDS, pedestal mounted, s 1.3
ROGIDS, Title at p 1
ROGIDS, vehicle mounted, s 1.3
system – definition, s 2.2.1
Documents Issued by the SAE G-12 Methods Committee

ARP4737J Aircraft Deicing/Anti-Icing Methods

Cancelled 2017-08-02 by SAE G-12 M.

As ARP4737J is a cancelled document, its indexing was removed from the Guide to Aircraft Ground Deicing. ARP4737H (the last active version of ARP4737) was replaced by AS6285 which was issued on August 19, 2016. The intent is for AS6285 is to become a standard adopted by all countries, ICAO, and IATA as the new global standard for processes for aircraft ground deicing.

AS6285 Aircraft Ground Deicing/Anti-Icing Processes

Issued 2016-08-19 by SAE G-12 M.

This is the first of the global standards to be issued. It provides the procedures to perform deicing and anti-icing of aircraft that are subject any form of ice, snow and frost.

Keywords:
aircraft deicing/anti-icing methods, Foreword at p 1
aircraft ground deicing methods, Foreword at p 1
aircraft operator – responsibilities, s 3.2
aircraft operator – responsibility for aircraft ground deicing programs, s 3.2
aircraft operator – responsibility for correct deicing/anti-icing procedures, Rationale par 4 at p 1, s 3.2
aircraft operator – responsibility for management responsibilities, s 3.2
aircraft operator – responsibility for pilot-in-command, s 3.2
aircraft skin temperature lower than OAT. See wing temperature lower than OAT
airport – responsibilities, s 3.4
airport – responsibility for DDF operability, s 3.4
airport – responsibility for environmental regulation compliance, s 3.4
airport – responsibility for fluid logistics airside, s 3.4
airport – responsibility for health and safety, s 3.4
airport – responsibility for message boards, s 3.4
airport – responsibility for weather support, 3.4
anti-icing – definition, s 2.2.2b
anti-icing code – definition, s 2.2.2b
anti-icing code, ss 3.3, 5.4, 5.5, 5.7, 5.8
anti-icing fluid – definition, s 2.2.2b
anti-icing procedure. See fluid application; fluid application, anti-icing
anti-icing, s 8.5
application equipment. See deicing unit
ATC – responsibilities, s 3.8
audit pool, s 4.1
brooms. See frozen contamination, removal of – with brooms
buffer. See freezing point buffer
check – definition, s 2.2.2b
check, clear ice, s 7.1
check, contamination. See contamination check
check, deicing/anti-icing. See post deicing/anti-icing check
check, flight control. See flight control check
check, fluid. See fluid check
check, pretakeoff contamination. See pretakeoff contamination check
check, pretakeoff. See pretakeoff check
check, tactile – aircraft manufacturer requirements, s 7.2
check, tactile – clear ice detection, s 7.1
check, tactile – definition, s 2.2.2b
check, tactile, ss 7.1, 8.5.2f

clean aircraft concept, s 3.5
clean condition – air conditioning inlets and outlets, s 6.4
clean condition – air conditioning pressure-release valves, 6.4
clean condition – angle of attack sensors, s 8.7.8
clean condition – control surfaces, s 6.1
clean condition – critical surfaces, s 6
clean condition – engine control system probes, s 6.3
clean condition – engine cooling intakes, s 6.3
clean condition – engine exhaust, s 6.3
clean condition – engine fan blades, s 6.3, 8.4.13
clean condition – engine inlets, s 6.3
clean condition – engine intake, s 8.4.13
clean condition – engine leading edge, s 6.3
clean condition – engine ports, 6.3
clean condition – engine spinner cones, s 6.3
clean condition – cockpit windows, s 6.8
clean condition – fuel tank vents, 6.6
clean condition – fuselage – presence of frost, s 6.7
clean condition – fuselage, s 6.7
clean condition – horizontal stabilizer, s 6.1
clean condition – landing gear doors, s 6.5
clean condition – landing gear, ss 6.5, 8.7.12
clean condition – nose, s 6.8
clean condition – outflow valves, s 6.4
clean condition – pitot tubes, s 6.2
clean condition – propellers, ss 6.3, 8.4.13
clean condition – radome, s 6.8
clean condition – rudder, s 6.1
clean condition – sensor – angle of attack, ss 6.2, 7.3
clean condition – sensor – temperature, ss 6.2, 7.3
clean condition – sensor, s 6.2
clean condition – sensors near heated windows, s 6.8
clean condition – static ports, s 6.2
clean condition – tail, s 6.1
clean condition – vertical stabilizer, s 6.1
clean condition – wheel bays, s 8.7.12
clean condition – window caution, heated, note at s 6.8
clean condition – window, cockpit, s 6.8
clean condition – wings, s 6.1
clean condition – wingtip devices, s 6.1
clean condition, s 6
clear ice, cold soaked – definition, s 2.2.2b
clear ice, conditions conducive to, ss 2.2.2b, 8.7.18
clear ice, detection of, s 8.7.18
clear ice, difficulty to detect, ss 2.2.2b, 8.7.18
cold soaked clear ice – definition, s 2.2.2b
cold soaked effect – definition s 2.2.2b
cold soaked fuel frost – definition, s 2.2.2b
cold soaked stabilizer, 8.5.2
cold soaked wing ice/frost – definition, s 2.2.2b
cold soaked wing, s 8.5.2
cold soaking – definition, s 2.2.2b
cold soaking – fuel caused, ss 2.2.2b, 6.1, 7, 7.3a, 8.5.2
combustion heaters – asphyxiation danger in poorly ventilated areas, s 4.3.3, 9.1
communication with flightcrew – absence of flightcrew at time of deicing63, s 5.2c
communication with flightcrew – ACARS, s 5.7
communication with flightcrew – after deicing/anti-icing, s 5.2
communication with flightcrew – all clear signal, s 5.6
communication with flightcrew – anti-icing code, ss 3.3, 5.4, 5.5, 5.7, 5.8
communication with flightcrew – before starting deicing/anti-icing, ss 5.2, 5.7
communication with flightcrew – CDF, s 5.7
communication with flightcrew – DDF, s 5.7
communication with flightcrew – deicing unit proximity sensor activation, s 5.10
communication with flightcrew – electronic flight bag, s 5.7
communication with flightcrew – engines-on, s 5.7
communication with flightcrew – English language, s 5.1
communication with flightcrew – flight interphone, ss 5.1, 5.7
communication with flightcrew – frost removal with Type I in non-active frost, note at s 5.1
communication with flightcrew – frost, local, s 8.5.2
communication with flightcrew – hand signals, s 5.1
communication with flightcrew – interruption of deicing/anti-icing, s 8.7.17
communication with flightcrew – message boards, ss 5.1, 5.7
communication with flightcrew – off-gate, s 5.7
communication with flightcrew – phraseology, s 5.9
communication with flightcrew – post deicing/anti-icing check completion, ss 5.4, 5.4f
communication with flightcrew – printed forms, s 5.1
communication with flightcrew – proximity sensor activation, s 5.10
communication with flightcrew – scripts, s 5.8
communication with flightcrew – verbal, precedence of, s 5.7
communication with flightcrew – VHF, s 5.1
communications, s 5
configuration, aircraft deicing, s 8.7.5
contamination [frozen] – definition, s 2.2.2b
contamination check – definition, s 2.2.2b
contamination check – establishes need for deicing , s 7.5,
contamination check – performance of, s 5.7b
contamination check – verification of all areas needing clean condition [See clean condition], s 7
contamination check – definition, s 2.2.2b
contamination check excludes clear ice check, 7.1
contamination check – responsibility of qualified personnel, s 5.7b
critical component – definition, Rationale par 3 at p 1

63 AS6285 is not explicit about the need to communicate with the flightcrew if deicing/anti-icing is performed in its absence. See s 13.a. of FAA Notice N 8900.431 for more information.
critical surface – definition, Rationale par 3 at p 1
DAQCP, s 4.1
definition – anti-icing code, s 2.2.2b
definition – anti-icing fluid, s 2.2.2b
definition – anti-icing, s 2.2.2.
definition – check, s 2.2.2b
definition – check, tactile, s 2.2.2b
definition – clear ice, cold soaked, s 2.2.2b
definition – cold soaked clear ice, s 2.2.2b
definition – cold soaked effect, s 2.2.2b
definition – cold soaked fuel frost, s 2.2.2b
definition – cold soaked wing ice/frost, s 2.2.2b
definition – cold soaking, s 2.2.2b
definition – contamination [frozen], s 2.2.2b
definition – contamination check, s 2.2.2b
definition – critical component, Rationale par 3 at p 1
definition – critical surface, Rationale par 3 at p 1
definition – deicing fluid, s 2.2.2b
definition – deicing service provider, s 2.2.2b
definition – deicing, s 2.2.2b
definition – deicing/anti-icing, s 2.2.2b
definition – freezing drizzle, s 2.2.2b
definition – freezing fog, s 2.2.2b
definition – freezing point buffer, negative, s 2.2.2b
definition – freezing point buffer\(^{64}\), s 2.2.2b
definition – freezing rain, light, s 2.2.2b
definition – frost, active, s 2.2.2b
definition – frost, cold soaked fuel, s 2.2.2b
definition – frost, local, s 2.2.2b
definition – frost, s 2.2.2b
definition – hail, s 2.2.2b
definition – hoarfrost, s 2.2.2b
definition – HOT, s 2.2.2b
definition – ice pellets, s 2.2.2b
definition – LOUT, s 2.2.2b
definition – may (SAE), s 2.2.2a
definition – proximity sensor, s 2.2.2b
definition – refractive index, s 2.2.2b
definition – refractometer, s 2.2.2b
definition – residue/gel, s 2.2.2b
definition – rime ice, s 2.2.2b
definition – shall (SAE), s 2.2.2a
definition – should (SAE), s 2.2.2a
definition – slush, s 2.2.2b
definition – snow grains, s 2.2.2b
definition – snow pellets, s 2.2.2b
definition – snow s 2.2.2b
definition – staff, qualified, s 2.2.2b
definition – storage tank, s 2.2.2b
deicing – definition, s 2.2.2b
deicing facility, infrared. See infrared deicing facility

\(^{64}\) Correct expression is “freezing” point, not “freeze” point, as spelled in AS6285.
deicing fluid – definition, s 2.2.2b
deicing provider – responsibilities, s 3.3
deicing service provider – definition, s 2.2.2b
deicing service provider. See service provider
deicing unit – asphyxiation danger in poorly ventilated areas, ss 4.3.3, 9.1
deicing unit – operation in confined areas, s 9.1
deicing unit – operation in poorly ventilated areas, s 9.1
deicing, s 8.4
deicing. See also frozen contamination, removal of
deicing, general strategy for, s 8.4.5
deicing, local area – symmetrical fluid application, s 8.4.8
deicing, local area, s 8.4.8
deicing. See also fluid application, deicing/anti-icing
deicing/anti-icing – absence of flightcrew at the time of, s 5.2c
deicing/anti-icing – definition, s 2.2.2b
deicing/anti-icing contracts, s 1.2
deicing/anti-icing decision – aircraft deiced or anti-iced some time before flightcrew arrival, s 7
deicing/anti-icing decision – aircraft subject to ice accretion in-flight, s 7
deicing/anti-icing decision – aircraft subject to snow or ice conditions during taxi to gate, s 7
deicing/anti-icing decision – aircraft subject to snow or ice conditions, s 7
deicing/anti-icing decision – aircraft subject to snow or ice conditions while parked, s 7
deicing/anti-icing decision – cold soaked aircraft with ice or frost, s 7
deicing/anti-icing decision – contamination check by flightcrew, s 7
deicing/anti-icing decision – contamination check by ground crew, s 7
deicing/anti-icing processes, Title at p 1
deicing/anti-icing See also fluid application
deicing/anti-icing, aircraft requirements after. See clean condition
deicing/anti-icing, interruption of, s 8.7.17
deicing/anti-icing, one-step, s 8.7.1, Tables 1–2
deicing/anti-icing, two-step, s 8.7.2, Tables 1–2
engine deicing – deicing fluid, s 8.4.13
engine deicing – hot air, s 8.4.13, 8.7.15
engine deicing – mechanical means, s 8.4.13
engine deicing, s 8.4.13
engine icing, conditions conducive to – freezing fog, s 8.7.15
engine icing, conditions conducive to – freezing precipitation, 8.7.15
flaps and slats contamination – blowing snow, s 8.7.14
flaps and slats contamination – in-flight-ice accretion, s 8.7.14
flaps and slats contamination – not visible when retracted, 8.7.14
flaps and slats contamination – splash up during taxi, s 8.7.14
flight control check, s 7.6
flight control, ss 7.6, 8.6.2, 8.7.1, 8.7.2
fluid acceptance – certificate of conformity, s 4.3.1a
fluid acceptance – cleaning certificate, s 4.3.1a
fluid acceptance – color, 4.3.1b
fluid acceptance – concentration [by refraction], s 4.3.1b
fluid acceptance – foreign body contamination [aka suspended matter], 4.3.1b
fluid acceptance – label check, s 4.3.1a
fluid acceptance – pH, s 4.3.1b
fluid acceptance – previous load documentation, s 4.3.1a
fluid acceptance – refractive index, s 4.3.1b
fluid acceptance – suspended matter [aka foreign body contamination], s 4.3.1b
fluid acceptance – viscosity, s 4.3.1b
fluid acceptance – visual inspection, s 4.3.1b
fluid acceptance, s 4.3.1a
fluid application – air conditioning off, s 8.7.6
fluid application – aircraft deicing configuration, s 8.7.5
fluid application – airframe manufacturer requirements, ss 1.1, 8.7.5, 8.7.9
fluid application – APU bleed air off, s 8.7.6
fluid application – cockpit windows, ss 8.7.10, 8.7.11
fluid application – composite surfaces, s 8.4.4
fluid application – elevator, s 8.7.4
fluid application – engine manufacturer requirements, ss 1.1
fluid application – engine, ss 8.7.6, 8.7.9, 8.4.13, 8.7.15
fluid application – flaps and slats, s 8.7.14
fluid application – fuselage, s 8.4.10
fluid application – guidelines, Tables 1–2
fluid application – heat loss, s 8.4.1
fluid application – horizontal stabilizer, s 8.7.4
fluid application – interruption – communication with flightcrew s 8.7.17
fluid application – interruption of, s 8.7.17
fluid application – landing gear and wheel bays, s 8.4.12
fluid application – minimize dilution with the first step fluid, s 8.4.5
fluid application – one-step, ss 5.4d, 8.1, 8.4.7, 8.4.8, 8.5.3, 8.6.1, 8.6.2, 8.7.1, 8.7.2, Tables 1–2
fluid application – re-deicing, s 8.3b
fluid application – removal of all frozen contamination, s 8.4.5
fluid application – removal of diluted fluid, s 8.4.5
fluid application – rudder, s 8.7.4
fluid application – steering system, s 8.4.12
fluid application – symmetrical, s 8.7.4
fluid application – temperature limits, ss 2.2.2b, 8.5.1, Tables 1–2
fluid application – three minute rule 65
fluid application – two-step – compatibility of Type I with Type II/III/IV, s 8.5
fluid application – two-step, ss 8.5.2c, 8.5.3, 8.6.1, 8.6.2, 8.7.2, Tables 1–2
fluid application – vertical stabilizer, s 8.7.4
fluid application – wheel bays, s 8.4.12
fluid application – wing skin temperature lower than OAT, Tables 1–2
fluid application – wing, s 8.7.4
fluid application, anti-icing – amount required, s 8.7.2, Tables 2
fluid application, anti-icing – before first step fluid freezes, s Tables 1–2
fluid application, anti-icing – clean aircraft, on, Table 2
fluid application, anti-icing – insufficient amount, Table 2
fluid application, anti-icing – maximum protection, s 8.5
fluid application, anti-icing – not on top of contamination, s 8.7.1
fluid application, anti-icing – one-step application of Type II/III/IV – residue formation, s 8.7.1
fluid application, anti-icing – overnight aircraft, s 8.5
fluid application, anti-icing – uniformity, s 8.5.1
fluid application, deicing – quantity, minimum – 1 liter/m², Tables 1–2
fluid application, deicing – quantity, minimum, Tables 1–2
fluid application, deicing – temperature application limits, Tables 1–2
fluid application, deicing – temperature at nozzle, minimum 60°C, Tables 1–2
fluid check – daily, s 4.3.3
fluid check – frequency, ss 4.3.2.1, 4.3.2.2, 4.3.3

65 The three minute rule of ARP4737H has been replaced in AS6285 by rule whereby the second step fluid has to be applied before the fluid of the first step freezes, s 8.7.1, Tables 1–2.
fluid check – pre-season, s 4.3.2
fluid check – records, s 4.3
fluid check – within-season, s 4.3.2
fluid check, ss 4.3 – 4.3.6
fluid compatibility – Type I with Type II/III/IV
fluid failure description – color change to white, s 8.5.2f
fluid failure description – loss of gloss, s 8.5.2f
fluid failure description – presence of ice crystals in the fluid, s 8.5.2f
fluid failure, deicing/anti-icing anew upon, s 8.7.2
fluid manufacturer documentation – acceptance field tests, s 4.3, 4.3.1
fluid manufacturer documentation – aerodynamic acceptance data, ss 2.2.2, 4.3.2.3, 8.6.1
fluid manufacturer documentation – certificate of analysis, s 4.3.1
fluid manufacturer documentation – color, s 4.3.1
fluid manufacturer documentation – concentration limits, s 8.6.1
fluid manufacturer documentation – field viscosity test limits, s 4.3.5d
fluid manufacturer documentation – field viscosity test method, s 4.3.5d
fluid manufacturer documentation – fluid application, s 8.5.1
fluid manufacturer documentation – fluid name, s 10.1
fluid manufacturer documentation – fluid transfer system requirements, ss 4.3, 10.2, 10.4
fluid manufacturer documentation – fluid, heating of, ss 4.3.4, 10.3
fluid manufacturer documentation – freezing point data, ss 2.2.2, 4.3.1
fluid manufacturer documentation – LOUT, ss 2.2.2, 8.8
fluid manufacturer documentation – mixing of different products, s 10.1
fluid manufacturer documentation – pH limits, ss 4.3.1, 4.3.2.3, 4.3.5c
fluid manufacturer documentation – refractive index limits, ss 2.2.2, 4.3.1, 4.3.2.3, 4.3.5b
fluid manufacturer documentation – safety data sheet, s 10.1
fluid manufacturer documentation – storage tank requirements, s 10.1
fluid manufacturer documentation – viscosity limits, ss 4.3.1, 4.3.2.3
fluid manufacturer documentation – viscosity test limits, field, s 4.3.5d
fluid manufacturer documentation – viscosity test method, field, s 4.3.5d
fluid manufacturer documentation – visual check test67, ss 4.3.1, 4.3.2.3
fluid mixing from different manufacturers, no, s 10.2
fluid mixing of different types, no, s 10.2
fluid sampling procedure68, s 4.3.6
fluid sampling, nozzle – collection with stand, s 4.3.6a
fluid sampling, nozzle – collection with trash cans, s 4.3.6b
fluid storage. See storage
fluid transfer system – chemical contamination, s 10.2
fluid transfer system – dedicated, s 10.2
fluid transfer system – design, s 10.2
fluid transfer system – fluid manufacturer’s recommendation, s 10.2
fluid transfer system – hoses, s 10.2

See footnote 69.

67 Section 4.3.1 calls for a “visual examination for color and foreign body contamination” in other words, the person performing this visual test must verify for color and the presence of foreign matter (aka as suspended matter). Section only refers to “visual examination” which includes an assessment of appearance (color and form, e.g., green liquid) and suspended matter. In this guide we index “visual examination” as “visual check” which should probably be broken down as appearance test and suspended matter test.

68 Although not covered in AS6285, a complete sampling procedure should cover safety precautions, personal protective equipment, special hazards at airport such as movement of trucks and aircraft, specific procedure for sampling delivery trucks, storage tanks, deicing unit tanks, drums, totes, warning about the possible high temperature of fluid, disposal of excess fluid taken during sampling, site clean up after sampling, specific sampling equipment (e.g., zone sampler). specific type of sample bottle.
fluid transfer system – labeling of discharge points, s 10.2
fluid transfer system – labeling of fill ports, s 5.2.3
fluid transfer system – labeling, s 10.2
fluid transfer system – no inadvertent mixing, s 10.2
fluid transfer system – no mixing with fluid of different manufacturer, s 10.2
fluid transfer system – no mixing with fluid of different Types of fluids, s 10.2
fluid transfer system – nozzle, s 10.2
fluid transfer system – piping, s 10.2
fluid transfer system – pumps, s 10.2
fluid transfer system – shearing, s 10.2
fluid transfer system – valves, s 10.2
fluid, pseudoplastic, s 8.5.3
forced air, s 8.2, 9.1
freezing drizzle – definition, s 2.2.2b
freezing fog – definition, s 2.2.2b
freezing point buffer – definition, s 2.2.2b
freezing point buffer – Type I – 10°C, ss 2.2.2b, 4.3.3.1
freezing point buffer – Type II/III/IV – 7°C, 2.2.2b
freezing point buffer, negative – definition, s 2.2.2b
freezing point buffer, negative – pre-deicing process, s 8.2
freezing point buffer, sufficient – wing skin temperature lower than OAT, s 8.7.1
freezing rain, light – definition, s 2.2.2b
frost – definition, s 2.2.2b
frost, active – definition, s 2.2.2b
frost, active – formation conditions, s 2.2.2b
frost, local – definition, s 2.2.2b
frost, local – flightcrew communications, s 8.5.2f
frost, local – fluid application (≥ 50°C) when frost starts to form, s 8.5.2c
frost, local – fluid application and coverage, 8.5.2a
frost, local – fluid application to clean surface, 8.5.2c
frost, local – prevention – aircraft operator approval, s 8.5.2b
frost, local – prevention – no HOT, ss 5.4, 8.5.2e
frost, local – prevention – trained personnel, s 8.5.2b
frost, local – prevention, s 8.5.2
frost, local – removal, s 8.4.8
frost, local – symmetrical treatment, ss 8.4.8, 8.5.2d
frost, local, s 8.5.2
frost, removal of, s 8.4.2
frost. See also frost, local
frost/hoarfrost – definition, s 2.2.2b
frozen contamination, removal of – from cockpit windows, s 8.4.11
frozen contamination, removal of – from elevator, s 8.4.6
frozen contamination, removal of – from engine fan blades, 8.7.15
frozen contamination, removal of – from engines, s 8.7.15
frozen contamination, removal of – from flaps, s 8.4.9
frozen contamination, removal of – from fuselage, s 8.4.10
frozen contamination, removal of – from hard wing aircraft, s 8.4.6
frozen contamination, removal of – from horizontal stabilizer, s 8.4.6
frozen contamination, removal of – from landing gear, s 8.4.12
frozen contamination, removal of – from lower wing surface, s 8.4.7
frozen contamination, removal of – from nose [aircraft], s 8.4.11
frozen contamination, removal of – from propeller driven aircraft, s 8.4.6
frozen contamination, removal of – from radome, s 8.4.11
frozen contamination, removal of – from underwing surface, 8.4.7
frozen contamination, removal of – from vertical surfaces, s 8.4.9
frozen contamination, removal of – from wheel bays, s 8.4.12
frozen contamination, removal of – from wings, s 8.4.6
frozen contamination, removal of – general strategy, ss 8.4.1, 8.4.5
frozen contamination, removal of – with brooms, s 8.2
frozen contamination, removal of – with fluid injected into forced air, s 8.2
frozen contamination, removal of – with fluid, s 8.4
frozen contamination, removal of – with forced air, s 8.2
frozen contamination, removal of – with frozen contamination, removal of – with negative freezing point buffer
frozen contamination, removal of – with heat, s 8.2
frozen contamination, removal of – with hot water, s 8.2
frozen contamination, removal of – with infrared, ss 8.2, 8.3
ground deicing and anti-icing program, s 3.5
hail – definition, s 2.2.2b
heat loss, s 8.4.1
hoarfrost – definition, s 2.2.2b
holdover time. See HOT
HOT – definition, s 2.2.2b
HOT – effect of aircraft surface coating
HOT – estimated time of protection, s 8.5.3
HOT – publication by FAA and Transport Canada, s 8.5.3
HOT – responsibility of HOT guideline data remains with user, s 8.5.3
hot fluids, s 8.2
HOT, end of, s 8.5.3
HOT, maximum – neat Type II/III/IV, s 8.5.3
HOT, reduction of – heavy precipitation rates, s 8.5.3
HOT, reduction of – high moisture content precipitation, s 8.5.3
HOT, reduction of – high wind velocity, s 8.5.3
HOT, reduction of – jet blast, s 8.5.3
HOT, reduction of – wing skin temperature lower than OAT, s 8.5.3
HOT, s 8.5.3
HOT, start of, s 8.5.3
ice accretion, in-flight, s 8.7.14
ice pellets – definition, s 2.2.2b
ice, light, removal of, s 8.4.2
ice, removal of, s 8.4.4
impact ice. See ice accretion, in-flight
infrared deicing – functional description, s 8.3b
infrared deicing facility – general requirements, s 8.3a
infrared deicing facility – procedure for aircraft inspection, s 8.3c
infrared deicing facility – procedure for anti-icing aircraft, s 8.3d
infrared deicing facility – procedure for deicing aircraft, s 8.3b
infrared deicing, s 8.3
infrared facility. See infrared deicing facility
local frost. See frost, local
LOUT – definition, s 2.2.2b
LOUT – Type I, s 8.6.1
LOUT – wing skin temperature lower than OAT, ss 2.2.2.b, 8.7.1, 8.7.2, Tables 1–2
may (SAE) – definition, s 2.2.2a
negative buffer. See freezing point buffer, negative
negative freezing point buffer. See freezing point buffer, negative
no spray – APU, s 8.7.9
no spray – control surface cavities, s 8.7.9
no spray – exhausts, s 8.7.7
no spray – intakes and outlets, s 8.7.9
no spray directly – air stream direction detectors, s 8.7.8
no spray directly – angle of attack airflow sensors, s 8.7.8
no spray directly – brakes, ss 8.7.7, 8.4.13
no spray directly – cabin windows, s 8.7.10
no spray directly – cockpit windows, s 8.7.10
no spray directly – electrical components, s 8.7.7
no spray directly – engine core, s 8.4.13
no spray directly – engine probes, s 8.7.9
no spray directly – engine, s 8.7.9, 8.4.13
no spray directly – pitot heads, s 8.7.8
no spray directly – static ports, s 8.7.8
no spray directly – thrust reversers, s 8.7.7
no spray directly – wheels, ss 8.7.7, 8.4.13
no spray directly – wing openings, s 8.4.6
no spray directly – wire harness, s 8.7.7
nozzle samples. See fluid sampling, nozzle
OAT, wing temperature lower than, Tables 1–2
one-step deicing/anti-icing, s 8.7.1
pilot-in-command – responsibility for clean aircraft, Rationale par 5 at p 1, s 3.1
post deicing/anti-icing check – before aircraft dispatch, s 7.3
post deicing/anti-icing check – by qualified staff, s 7.3
post deicing/anti-icing check – elements of, s 7.3
post deicing/anti-icing check – from points offering visibility of all treated surfaces, s 7.3
post deicing/anti-icing check – incorporated in deicing/anti-icing operation or as separate check, s 7.3
post deicing/anti-icing check – repetition, s 7.3c
post deicing/anti-icing check – responsibility to conduct, s 5.5
post deicing/anti-icing check excludes clear ice check, s 7.3
post deicing/anti-icing check, ss 5.5, 7.3
pre-deicing process – brooms, s 8.2
pre-deicing process – forced air with fluid, s 8.2
pre-deicing process – forced air, s 8.2
pre-deicing process – heat, s 8.2
pre-deicing process – heavy frozen contaminant accumulation, s 8.4.3
pre-deicing process – hot air, s 8.2
pre-deicing process – hot water, s 8.2
pre-deicing process – infrared, s 8.2
pre-deicing process – negative freezing point buffer hot fluid, s 8.2
pre-deicing process, s 8.2
preflight check – by flightcrew, s 7
preflight check – by ground crew, s 7
pretakeoff check – assessment by flightcrew if HOT is still appropriate, s 7.4
pretakeoff check, ss 7.4, 7.5, 8.5.3
pretakeoff contamination check – alternative is re-deicing, s 7.5
pretakeoff contamination check – when critical surface conditions cannot be determined by flightcrew, s 7.5
pretakeoff contamination check – when HOT exceeded, s 7.5
pretakeoff contamination check, s 7.5
program, ground deicing and anti-icing, s 3.5
proximity sensor – definition, s 2.2.2b
proximity sensor activation – communications with flightcrew, ss 5.10, 8.7.19
proximity sensor activation – reporting procedure, s 8.7.19
proximity sensor activation, deicing unit, s 5.10
quality assurance – audit, s 4.1
quality assurance subset of quality program, s 4
quality assurance, s 4.1
quality control program, s 4.2
quality control subset of quality program, s 4
quality program superset of quality assurance and quality control, s 4
refractive index – definition, s 2.2.2b
refractometer – definition, s 2.2.2b
regulator – responsibilities, s 3.5
regulator – responsibility for regulations and guidance material, s 3.5
regulator – responsibility for airline to have a deicing program, s 3.5
regulator – responsibility for policies and standards supporting the clean aircraft concept, s 3.5
regulator – responsibility for regulations and guidance material on clean aircraft concept, s 3.5
residue. See Type II/III/IV residue
residue/gel – definition, s 2.2.2b
rime ice – definition, s 2.2.2b
sample bottle label – concentration [e.g., 100/0, 75/25, 50/50], s 4.3.6c
sample bottle label – date sample taken, s 4.3.6c
sample bottle label69 – hazard category
sample bottle label – name of airline or company sending the sample, see footnote 69
sample bottle label – name of vessel [e.g., deicing unit 5, storage tank B, tote 57], s 4.3.6c
sample bottle label – origin [airport code, city], s 4.3.6c
sample bottle label – product name, s 4.3.6c
sample bottle label – where the sample was taken from [e.g., nozzle, bottom valve, top of tank, middle of tank], s 4.3.6c
sampling frequency, ss 4.3.2.1, 4.3.2.2, 4.3.3
sampling, nozzle. See fluid sampling, nozzle
service provider – responsibilities, s 3.3
shall (SAE) – definition, s 2.2.2a
should (SAE) – definition, s 2.2.2a
slipperiness, s 10.1
slush – definition, s 2.2.2b
snow – definition, s 2.2.2b
snow grains – definition, s 2.2.2b
snow grains subset of snow [for HOT], s 2.2.2b
snow pellets – definition, s 2.2.2b
snow, removal of, s 8.4.3
snowflake formation, s 2.2.2b
staff, qualified – definition, s 2.2.2b
storage – annual inspection, s 10.1
storage – contamination check, s 10.1
storage – corrosion at vapor space, s 10.1
storage – corrosion check, s 10.1
storage – corrosion in vapor space, s 10.1
storage – dedicated, s 10.1
storage – degradation check – frequency, s 10.1
storage – degradation check, s 10.1
storage – dissimilar metals, s 10.1

69 Although not listed in section 4.3.6c of AS6285, the following should appear on a sample label: name of the airline or company sending the sample and hazard category of the fluid, a mandatory requirement for shipping chemicals.
storage – effect of prolonged heating, s 4.3.4
storage – galvanic couple, s 10.1
storage – label, s 10.1
storage – labeling, conspicuous, s 10.1
storage – prolonged heating, s 10.3
storage – sampling frequency s 10.1
storage – temperature, s 10.1
storage – viscosity test, s 4.3.2.3
storage – water loss, s 10.3
storage tank – definition, s 2.2.2b
sublimation, frost formation by, s 2.2.2b
temperature at nozzle, Tables 1–2
training, s 11
two-step deicing/anti-icing, 8.7.2
Type I – acetate based, s 8.5
Type I – application guidelines. See fluid application
Type I – compatibility with Type II/III/IV70
Type I – formatted based, s 8.5
Type I – functional description, s 8.5.3
Type I – LOUT, s 2.2.2b, Table 1
Type I – maximum concentration, ss 4.3.3.1, 8.6.1
Type I – use of concentrate form, no, s 8.6
Type II/III/IV – application guidelines. See fluid application
Type II/III/IV – fluid transfer system – dedicated, s 10.2
Type II/III/IV – fluid transfer system – labeling, s 10.2
Type II/III/IV – fluid transfer system, s 10.2
Type II/III/IV – functional description, s 8.5.3
Type II/III/IV – LOUT differs for dilutions, Table 2
Type II/III/IV – minimum quantity (1 liter/m²), s 8.5.1
Type II/III/IV – removal from cockpit windows, 8.7.11
Type II/III/IV – thickness application, sufficient, s 8.5, 8.5.1
Type II/III/IV – use as deicing fluid – residue inspection and cleaning program required, ss 8.7.1, 8.7.2
Type II/III/IV – use in first-step of two-step process – residue inspection and cleaning program required, s 8.7.2
Type II/III/IV – use in one-step deicing – residue inspection and cleaning program required, s 8.7.2
Type II/III/IV – water loss, ss 8.5, 10.3
Type II/III/IV 50/50 – cold soaked wing, do not used for, Table 2
Type II/III/IV 50/50 – tolerance on fluid/water mixtures, s 4.3.3.3
Type II/III/IV 75/25 – tolerance on fluid/water mixtures, s 4.3.3.3
Type II/III/IV degradation – heating, s 10.3
Type II/III/IV degradation – water loss s 10.3
Type II/III/IV dehydration. See Type II/III/IV degradation – water loss
Type II/III/IV residue cleaning program, s 8.7.1
Type II/III/IV residue cleaning, s 8.7.16
Type II/III/IV residue detection, ss 8.7.1, 8.7.2
Type II/III/IV residue detection. See also Type II/IV residue detection
Type II/III/IV residue formation – conditions conducive to, ss 8.6.2, 8.7.1, 8.7.2, 8.7.16
Type II/III/IV residue formation – no takeoff and no precipitation after fluid application, s 6.9

70 The following sentence, present in ARP4737H, is missing from AS6285: “When a fluid conforming to AMS1428 is used to perform step two in a two step (sic) deicing/anti-icing operation, and the fluid used in step one is a Type I fluid conforming to AMS1424, a test shall be made to confirm that the combination of these fluids does not significantly reduce the WSET performance of the AMS1428 fluid.”
Type II/III/IV residue formation – Type I to alleviate, s 8.7.1
Type II/III/IV residue formation – use of Type II/III/IV without Type I, s 8.7.2
Type II/III/IV residue inspection, ss 8.7.1, 8.7.2, 8.7.16
Type II/III/IV residue, effect of – flight control restrictions, s 8.7.1, 8.7.2
Type II/III/IV residue, s 8.7.16
water loss – Type I – undesirable aerodynamic effects, s 10.3
water loss – Type II/III/IV – degradation and lower HOT, s 10.3
water loss due to heating s 10.3
windows with wipers, cockpit – removal of Type II/III/IV, s 6.8
windows, cockpit – removal of Type II/III/IV, s 6.8
wing skin temperature lower than OAT, ss 8.5.3, 8.7.2, Tables 1–2

ARP6257 Aircraft Ground De/Anti-icing Communication Phraseology for Flight and Ground Crews

ARP6257 issued 2016-10-25 by SAE G-12 M.

AS6287 contains standardized scripts for communication between aircraft flight and ground crews during aircraft deicing operations. It covers contact protocols, aircraft configuration, de/anti-icing treatment needed and post deicing reporting requirements.

Keywords:
anti-icing code, s. 3.2.1
communication with flightcrew – aircraft configuration confirmation, s 3.2.1
communication with flightcrew – all clear signal, s 3.2.1
communication with flightcrew – anti-icing code, s 3.2.1
communication with flightcrew – before starting deicing/anti-icing, s 3.2.1
communication with flightcrew – deicing unit proximity sensor activation s 3.2.2.1a
communication with flightcrew – emergency, s 3.2.2.1b
communication with flightcrew – interrupted operations, s 3.2.2.2a
communication with flightcrew – phraseology, need for standard, s 1.1, 1.2
communication with flightcrew – phraseology, Rationale at p 1, ss 1, 3
communication with flightcrew – post deicing/anti-icing check completion, s 3.2.1
communication with flightcrew – proximity sensor activation s 3.2.2.1a
emergency – communications, s 3.2.2.1b
phraseology, Rationale at p 1, ss 1, 3
phraseology, use of standard, ss 1.1, 1.2

AS5537 Weather Support to Deicing Decision Making (WSDMM) Winter Weather Nowcasting System

AS5537 issued 2004-05-04 by SAE G-12 M.

AS5537 provides guidelines for the deployment of WSDMM nowcasting weather system which is a form of holdover time determination system (HOTDS). This system converts real-time snow
data and other precipitation data into liquid water equivalent data which is matched to endurance
time data using appropriate regression equation. The system provides a check time for an aircraft
treated with Type I/II/II/IV fluids. The check time is used to determine the fluid protection
capability in varying weather conditions.

Keywords:
GEONOR, s 4
HOTDS – WSDMM, Foreword at p 1
LWES, Foreword at p 1
METAR snowfall intensity underestimation. See snowfall intensity, METAR – underestimation.
nowcasting, Title at p 1
snow gauge – hotplate, s 4
snow gauge – precipitation, s 4
snow gauge, Foreword at p 1, s 4
snowfall intensity, METAR – underestimation in heavily rimed snow, Foreword at p 2, s 1.2
snowfall intensity, METAR – underestimation in snow containing single crystals of compact shape, Foreword
at p 2, s 1.2
snowfall intensity, METAR – underestimation in wet snow, Foreword at p 2, s 1.2
snowfall rate – liquid water equivalent, Foreword at p 2, s 1.2
weather support to deicing decision making, Title at p 1
wind shield – single alter, s 4.1
WSDMM, Title at p 1

AIR1335A Ramp De-icing

Issued 2000-03-01 by SAE G-12 M.

To be cancelled, as it was replaced by ARP4737. It is not indexed.
Documents Issued by the SAE G-12 Deicing Facilities Committee

ARP5660A Deicing Facility Operational Procedures

ARP5660A issued 2011-01-06 by SAE G-12 DF.

ARP5660A provides guidelines for the standardization of safe operating procedures to be used in performing the services and maintenance at designated deicing facilities (DDF), centralized deicing facilities (CDF) or remote deicing facilities. AIR5660A should be used by regulators and airport authorities to develop and standardize approvals and permits for the establishment and operation of a DDF. The coordination of stakeholders is required prior to the approval of design plans for a deicing facility. Operating procedures must be agreed to, in writing, by all air operators, airport authorities, regulators and service providers prior to commencing deicing operations.

Keywords:
- ACARS – definition, s 2.3
- CDF – definition, s 2.3
- CDF subset of DDF, Foreword at p 1
- CDF. See also DDF
- central deicing facility. See CDF
- centralized deicing facility. See CDF
- control point – definition, s 2.3
- control point. See also transfer point
- DDF – approval, s 14
- DDF – control boundaries, s15.2
- DDF – definition, s 2.3
- DDF – design of, s 1.2
- DDF – documentation, s 11
- DDF – emergency action plans, s 7
- DDF – emergency communications protocol, Table A3
- DDF – engines-on deicing, Rationale at p 1, ss 3.2, 4.1.4, 4.2.5.1
- DDF – environmental considerations, s 5
- DDF – fluid acceptance, ss 12.2.3, 12.2.4
- DDF – fluid management, s 12
- DDF – fluid testing, ss 12.2.5, 12.2.6
- DDF – operational procedure, ss 1.1, 3
- DDF – phraseology, Appendix A
- DDF – pilot brief sheet, Appendix B
- DDF – pre-storm planning, s 15.1, Table 1
- DDF – quality control, s 13
- DDF – safety, s 9
- DDF – service provider, single, s 4.3.1
- DDF – service providers, several, s 4.3.2
- DDF – snow removal, s 8
- DDF – spent fluid, s 5.9
- DDF superset of centralized deicing facility, s 1.1
DDF superset of remote deicing facility, s 1.1
definition – ACARS, s 2.3
definition – CDF, s 2.3
definition – control point, s 2.3
definition – DDF, s 2.3
definition – deicing bay, s 2.3
definition – deicing coordinator, s 2.3
definition – deicing crew, s 2.3
definition – deicing facility, s 2.3
definition – deicing lead, s 2.3
definition – deicing operator, s 2.3
definition – deicing pad, s 2.3
definition – deicing vehicle operator, primary, s 2.3
definition – ground coordinator, s 2.3
definition – ice house, s 2.3
definition – iceman, s 2.3
definition – pad control point, s 2.3
definition – pad control, s 2.3
definition – pad leadership, s 2.3
definition – pink snow, s 2.3
definition – primary deicing vehicle operator, s 2.3
definition – remote deicing facility, s 2.3
definition – slot management, s 2.3
definition – snow desk, s 2.3
definition – snow, pink, s 2.3
definition – staging area, s 2.3
definition – transfer point, s 2.3
definition – windrows, s 2.3
deicing bay – definition, s 2.3
deicing coordinator – definition, s 2.3
deicing crew – definition, s 2.3
deicing facility – definition, s 2.3
deicing facility – operational procedure, Title at p 1
deicing facility, designated. See DDF
deicing facility, remote subset of DDF p 1
deicing lead – definition, s 2.3
deicing operator – definition, s 2.3
deicing operator – definition, s 2.3
deicing pad – definition, s 2.3
deicing vehicle operator, primary – definition, s 2.2
designated deicing facility. See DDF
engines-on deicing, Rationale at p 1, ss 3.2, 4.1.4, 4.2.5.1
fluid acceptance – DDF, ss 12.2.3, 12.2.4
frozen contamination, removal of – with forced air at DDF, s 3.3
frozen contamination, removal of – with infrared at DDF, s 3.3
frozen contamination, removal of – with steam at DDF, s 3.3
glycol mitigation, s 5.11
ground coordinator – definition, s 2.3
hand signals, ss 4.2.1, 4.2.6
ice house – definition, s 2.3
iceman – definition, s 2.3
message boards – use at DDF, s 4.1.4
pad control – definition, s 2.3
pad control point – definition, s 2.3
pad leadership – definition, s 2.3
pink snow – definition, s 2.3
primary deicing vehicle operator – definition, s 2.3
remote deicing facility – definition, s 2.3
remote deicing facility subset of DDF, s 15.2
remote deicing facility. See also DDF (designated deicing facility)
slot management – definition, s 2.3
snow desk – definition, s 2.3
snow removal – DDF, s 9
snow, pink – definition, s 2.3
staging areas\(^7\) – definition, s 2.3
transfer point – definition, s 2.3
windrows – definition, s 2.3

ARP4902B Design of Aircraft Deicing Facilities

Issued 2013-03-28 by SAE G-12 DF.

ARP4902B provides guidance material to assist in assessing the need for and feasibility of developing deicing facilities, the planning (size and location) and design of deicing facilities including environmental and operational considerations.

Keywords:
ADF, spent. See also deicing facility – spent ADF
aircraft deicing facility. See deicing facility
aircraft deicing pad. See deicing pad
common fluid, s 6.1.3
definition – deicing facility, remote, s 2.2.1.2
definition – deicing facility, s 2.2.1
definition – deicing facility, terminal, s 2.2.2.1
definition – deicing pad, s 2.2.2
definition – remote deicing facility, s 2.2.1.2
deicing facility – aircraft failure, s 6.5.1.5
deicing facility – aircraft marshaling plan, s 6.5.1.1
deicing facility – aircraft parking area, s 2.2.2
deicing facility – apron perimeter, s 4.5.2
deicing facility – ATC, coordination with, s 6.2
deicing facility – BOD, s 5.2
deicing facility – COD, s 5.2
deicing facility – common fluid, s 6.1.3
deicing facility – construction, Foreword p 1, s 4
deicing facility – definition, s 2.2.1
deicing facility – deicing pad safety, s 6.7.1
deicing facility – deicing vehicle maneuvering area, s 2.2.2
deicing facility – design, Title at p 1, s 4

\(^7\) Section 2 of ARP4902B defines staging area, yet the deicing pad definition refers to staging bay.
deicing facility – disabled aircraft, ss 3.2.2.2, 6.5.1.2
deicing facility – drainage and collection, ss 4.6, 5.3.2
deicing facility – drainage, ss 3.2.1.4, 3.5.3.1, 4.1, 4.5, 5.3.2
deicing facility – effect on water quality, s 5.1.2
deicing facility – emergency evacuation, s 6.5.1.5
deicing facility – emergency response, s 6.9.2
deicing facility – engine shutdown/restart, s 6.5.1.2
deicing facility – environmental considerations, s 5
deicing facility – environmental reporting, s 6.9.6
deicing facility – equipment failures, s 6.5.1.2
deicing facility – facility activation, s 6.4.4
deicing facility – FBO, s 6.1.1.4
deicing facility – fluid segregation, s 5.3.3
deicing facility – gate hold procedure, s 6.2.2
deicing facility – glycol – oxygen depleting potential, s 5.1.1
deicing facility – glycol recovery vehicle, ss 5.3.3, 5.5.2
deicing facility – grooved pavements, s 4.5.1
deicing facility – ground power unit, s 6.6.6
deicing facility – ground water protection, s 5.3.5
deicing facility – GRV, s 5.3.3, 5.5.2
deicing facility – jet blast, s 4.3.3, 6.8
deicing facility – location considerations, s 3
deicing facility – nighttime lighting systems, s 4.4.2
deicing facility – oil/water separator, s 5.3.2.2
deicing facility – pad configuration, s 4.3
deicing facility – passenger emergency, s 6.5.1.5
deicing facility – pavement lighting, s 4.4.1.2
deicing facility – pavement markings, s 4.4.1.1
deicing facility – pavement system, s 4.5
deicing facility – pH, s 5.2
deicing facility – piping, s 5.3.1
deicing facility – planning, Foreword at p 1
deicing facility – prevailing winds, s 4.3.5
deicing facility – recycling ADF, s 5.4.2
deicing facility – secondary containment, s 5.3.1
deicing facility – security requirements, s 6.9.5
deicing facility – signage, s 6.5.1.4
deicing facility – snow removal, ss 4.6.3, 6.5.2.1
deicing facility – spent ADF – above ground storage tanks, s 5.3.4.3
deing facility – spent ADF – biological degradation, s 5.4.2
deing facility – spent ADF – detention pond, ss 4.6.5.2, 5.3.4.1
deing facility – spent ADF – disposal, s 5.4.1
deing facility – spent ADF – photochemical oxidation, s 5.4.4
deing facility – spent ADF – recycling, s 5.4.3
deing facility – spent ADF – storage size, s 5.3.4
deing facility – spent ADF – underground storage tanks, s 5.3.4.2
deing facility – spent ADF – waste water treatment plant, s 5.4.2
deing facility – storage, s 5.3.1
deing facility – storm drain system, s 5.3.2.2
deing facility – storm water, s 4.6.5
deing facility – surface water, s 5.3.2.1
deing facility – taxi routes, s 6.2.3
deing facility – throughput demand, s 6.6.1
AS5635 Message Boards (Deicing Facilities)

AS5635 issued 2005-02-16 by SAE G-12 DF.

AS5635 establishes the minimum standard requirements for message boards deicing facilities including the minimum content and appearance of the display, functional capabilities, design, inspection, and testing requirements

Keywords:
decing facility – message boards, Title at p 1
message boards – aircraft entry, s 3.4.3.1
message boards – aircraft exit, s 3.4.3.4
message boards – aircraft positioning, s 3.4.3.2
message boards – deicing/anti-icing information, s 3.4.3.3
message boards – design requirements, s 3
message boards – inspection and testing, s 4
message boards – minimum design requirement, s 3.5
message boards – precedence of verbal communications, s 3.4.3
message boards – purpose, s 3.2
message boards – safety requirements, s 3.6
message boards – system malfunction, s 3.6.2
message boards – technical requirements, s 3.3
message boards, Title at p 1
Documents Issued by the SAE G-12 Equipment Committee

ARP1971C Aircraft Deicing Vehicle - Self-Propelled

Revised 2011-05-06 by SAE G-12 E.

ARP1971C covers requirements for a self-propelled, boom type aerial device, equipped with an aircraft deicing/anti-icing fluid spraying system.

Keywords:
aircraft deicing vehicle – self-propelled. See deicing unit
anti-icing truck. See deicing unit
basket. See deicing unit – basket
boom. See deicing unit – boom
deicing truck. See deicing unit
deicing unit – acceptance, s 4
deicing unit – aerial basket, ss 3.1, 3.2.3, 3.4
deicing unit – aerial device, s 3.4
deicing unit – aircraft inspection, use for, s 1
deicing unit – aircraft maintenance, use for, s 1
deicing unit – basket capacity, s 3.2.3
deicing unit – basket, ss 3.1, 3.2.3, 3.4
deicing unit – blower, s 3.2.9
deicing unit – boom, s 3.4
deicing unit – chassis, s 3.3.9
deicing unit – combustion heaters, s 3.2.7
deicing unit – controls and instrumentation, s 3.6
deicing unit – fast heating system, s 3.2.7
deicing unit – fill ports – different sizes, s 3.9.19
deicing unit – fill ports, s 3.9.19
deicing unit – fluid contamination, s 3.5.6
deicing unit – fluid delivery pressure, s 3.2.4
deicing unit – fluid delivery rate, s 3.2.4
deicing unit – fluid delivery temperatures, s 3.2.4
deicing unit – fluid fill couplings, s 3.9.19
deicing unit – fluid fill ports, s 3.9.19
deicing unit – fluid heating system ss 3.2.7, 3.5.15-17, 3.9.25
deicing unit – fluid heating system, electric 3.9.25
deicing unit – fluid labeling, s 3.5.1
deicing unit – fluid level gauges, s 3.6.8
deicing unit – fluid mixing system, ss 3.9.2, 3.9.3
deicing unit – fluid pressure gauge, s 3.9.20
deicing unit – fluid proportioning system, ss 3.2.5, 3.9.2, 3.9.3

72 ARP1971C does not offer an exhaustive list of potential sources of chemical contamination, for example when new equipment is placed into service, it may have been shipped with an antifreeze solution in the pump and piping system. This antifreeze solution is an unwanted contaminant and needs to be cleaned off. Rain can enter through covers, so can melted snow. Often deicing trucks tanks are filled with water in the summertime for training purpose; care should be taken to drain the water before the deicing truck is put back into service.
deicing unit – fluid pumps – circulating/mixing, s 3.9.1
deicing unit – fluid pumps – on demand, s 3.9.1
deicing unit – fluid pumps – positive displacement, s 3.9.1
deicing unit – fluid pumps – rotary diaphragm, s 3.9.1
deicing unit – fluid pumps – test for fluid shear degradation, s 3.9.1
deicing unit – fluid pumps – Type II/III/IV, s 3.9.1
deicing unit – fluid pumps, s 3.9.1
deicing unit – fluid spray pattern, s 3.5.11
deicing unit – fluid system, s 3.5
deicing unit – fluid tank capacity, s 3.5.2
deicing unit – fluid tank fittings, s 3.5.5
deicing unit – fluid tank, s 3.9.1
deicing unit – fuel capacity, s 3.2.10
deicing unit – hose couplings, s 3.9.19
deicing unit – hot water deicing system, ss 3.5.4, 3.9.2, 3.9.27
deicing unit – inspection of aircraft, s 1
deicing unit – labeling of, s 3.2.12
deicing unit – maintenance manuals, s 5
deicing unit – markings on, s 3.2.12
deicing unit – mixing system. See deicing unit – fluid mixing system
decing unit – modifications, s 6.4
decing unit – nozzle – ground level – Type I only, s 3.5.2
decing unit – nozzle – pressure gauge, s 3.9.23
decing unit – nozzle – rate of flow adjustment, s 3.5.11
decing unit – nozzle – spray patterns, s 3.5.11
decing unit – nozzle – test for degradation, s 3.9.1
decing unit – nozzle – Type II/III/IV, ss 3.9.1–3.9.3
decing unit – nozzle, adjustable, s 3.5.11
decing unit – nozzle, ss 3.5.10, 3.5.12, 3.9.1 - 3.9.3
decing unit – on-board fluid mixing system, ss 3.9.2, 3.9.3
decing unit – parts, ss 5.2, 6.1
decing unit – personnel basket. See deicing unit – basket
decing unit – product support, s 6
decing unit – proportioning mix system, ss 3.9.2, 3.9.3, 3.9.27
decing unit – pumps. See deicing unit – fluid pumps, s 9.1
decing unit – speed control device, s 3.8.9
decing unit – speed, s 3.2.1
decing unit – spray nozzle See deicing unit – nozzle
decing unit – tank capacity, s 3.2.5
decing unit – tank covers, s 3.5.6
decing unit – tank rain entry prevention, s 3.5.6
decing unit – technical requirements, s 3
decing unit – training by manufacturer, s 6.3
decing unit – Type II, III and IV system, ss 3.9.1–3.9.3
decing unit – use for aircraft maintenance, s 1
decing unit – use for inspection, s 1
decing/anti-icing truck. See deicing unit
decing unit
hone couplings, s 3.9.19
hot water deicing system, ss 3.5.4, 3.9.2, 3.9.27
hot water deicing. See also deicing unit – hot water deicing
nozzle. See also deicing unit – nozzle
pump. See also deicing unit – fluid pump

102
AIR6284 Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants

Issued 2015-01-22 by SAE G-12 E.

Forced air is a process by which an air stream is utilized to remove accumulation of frozen contamination from the aircraft. Forced air can be used with or without deicing fluid, heated or unheated. AIR6284 provides information on equipment, safety, operation, and methodology for use of deicing vehicles equipped with forced air.

Keywords:
air stream, Rationale at p 1, ss 3, 4.3.2, 5.1.3
deicing unit – forced air. See forced air
foam – forced air application of Type II/III/IV, s 4.3.3
forced air – air pressure at nozzle, pp 5-10
forced air – air pressure, maximum, s 5.1.2
forced air – air velocity v distance, p 11-16
forced air – air velocity, pp 5-10
forced air – air volumes, pp 5-10
forced air – aircraft safety – debris, s 4.2
forced air – debris as projectiles, ss 4.1, 4.2
forced air – foam formation, s 4.3.3
forced air – forcing frozen contamination in control areas, s 5.1.5
forced air – incomplete removal of contaminants, s 5.1.1
forced air – injected fluid quantity, pp 5-10
forced air – noise levels s 4.1, pp 28-29
forced air – personnel safety – noise, s 4.1
forced air – personnel safety – projectiles, s 4.1
forced air – post deicing/anti-icing check, s 5.1.6
forced air – potential damage to landing gear, s 5.1.4
forced air – potential damage to wheel well components s 5.1.4
forced air – pressure distribution, p 17
forced air – pressure loads, average, p 19
forced air – pressure loads, peak, p 18
forced air – pressure, average, p 17
forced air – pressure, peak, p 17
forced air – projectile formation, pp 40-41
forced air – removal of frozen contamination, Title at p 1
forced air – safety trials, pp 20-42
forced air – sound level, s 4.1, pp 28-29
forced air – with fluid – no HOT, s 4.3.1
forced air – with fluid, Rationale at p 1
forced air – with heated fluid, Rationale at p 1
forced air – with unheated fluid, Rationale at p 1
forced air – without fluid, Rationale at p 1
frozen contamination, removal of – with forced air and fluid, Rationale at p 1
frozen contamination, removal of – with forced air, Title at p 1
HOT, no – Type I applied with forced air, s 4.3.1
removal of frozen contamination with forced air, Rationale at p 1
ARP5058A Enclosed Operator’s Cabin for Aircraft Ground Deicing Equipment

Revised 2004-06-21 by SAE G-12 E.

ARP5058A sets guidelines and design requirements for an enclosed cabin for both mobile deicers and fixed deicing equipment.

Keywords:
decing boom – variable height, s 3.2.1
decing boom, s 3.1
decing unit – cabin design requirements, s 1
decing unit – enclosed cabin. See enclosed cabin
closed cabin – acceptance, s 4
closed cabin – controls, s 3.3.5
closed cabin – design requirements, s 1
closed cabin – dual operator weight capacity, s 3.2.2
closed cabin – general description, s 3.1
closed cabin – guidelines, s 1
closed cabin – ice detection system, s 3.6.3
closed cabin – nozzle for Type II/III/IV, s 3.4.3
closed cabin – nozzle requirements, s 3.4.3
closed cabin – safety devices, s 3.5
closed cabin – single operator weight capacity, s 3.2.2
closed cabin – stability, ss 3.3.1-3.3.3
closed cabin v open basket, s 3.1
closed cabin, Title at p 1
closed operator’s cabin. See enclosed cabin
fixed deicing equipment – enclosed cabin, s 1
ice detection system – enclosed cabin, optional equipment for, s 3.6.3
mobile deicing equipment – enclosed cabin, s 1
nozzle requirements– enclosed cabin, s 3.4.3
ROGIDS – enclosed cabin, optional equipment for, s 3.6.3
ARP5149B Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground

Revised 2013-11-06 by SAE G-12 T.

ARP5149B is expected to be cancelled soon as it was replaced by AS6286, AS6286/1, AS6286/2, AS6286/3, AS6286/4, AS6286/5 and AS6286/6 which were all issued in late 2016.

ARP5149B establishes the minimum criteria for effective training of air carrier and service provider personnel to deice/anti-ice aircraft to ensure the safe operation of aircraft during ground icing conditions. It includes recommendations for trainer qualification, for train-the-trainer in order to ensure training is performed by competent and qualified individuals, provision for the use of computer based training/e-learning/distant learning and computer based deicing simulators, recommendations for language proficiency and qualification and competency for personnel involved in deicing/anti-icing communications. It presents aircraft diagrams with spray and no-spray zones.

Keywords:
Airbus A300 spray area diagram, Appendix D
Airbus A310 spray area diagram, Appendix D
Airbus A318/319 spray area diagram, Appendix D
Airbus A320 spray area diagram, Appendix D
Airbus A321 spray area diagram, Appendix D
Airbus A330 spray area diagram, Appendix D
Airbus A340 spray area diagram, Appendix D
Airbus A350 spray area diagram, Appendix D
Airbus A380 spray area diagram, Appendix D
Airbus A400M spray area diagram, Appendix D
anti-icing – definition, Appendix A
anti-icing fluid – definition, Appendix A
ATR ATR42/ATR72 spray area diagram, Appendix D
BAe 146/Avro RJ spray area diagram, Appendix D
BAe Jetstream JS31/JS41 spray area diagram, Appendix D
Beechcraft B1900 spray area diagram, Appendix D
Boeing B717 spray area diagram, Appendix D
Boeing B727 spray area diagram, Appendix D
Boeing B737 spray area diagram, Appendix D
Boeing B747 spray area diagram, Appendix D
Boeing B757 spray area diagram, Appendix D
Boeing B767 spray area diagram, Appendix D
Boeing B777 spray area diagram, Appendix D
Boeing B787 spray area diagram, Appendix D
Boeing C-17 spray area diagram, Appendix D
Bombardier Global Express spray area diagram, Appendix D
Canadair RJ100/200 spray area diagram, Appendix D
Canadair RJ700/900/1000 spray area diagram, Appendix D
CBT. See training, computer based
Cessna Caravan C208 spray area diagram, Appendix D
check – definition, Appendix A
check, flight control. See flight control check
check, gate departure. See gate departure check
check, pretakeoff contamination. See pretakeoff contamination check
check, pretakeoff. See pretakeoff check
clear ice – definition, Appendix A
clear ice, conditions conducive to, s 10.2
clear ice, detection of, s 10.2
cold soaked wing – definition, Appendix A
computer based deicing simulators. See training, computer based deicing simulator
computer based deicing simulators, Rationale at p 1, Appendix E
computer based training. See training, computer based
critical surface – definition, Appendix A
Dassault Falcon spray area diagram, Appendix D
de Havilland DASH-8 100/200/300 spray area diagram, Appendix D
definition – anti-icing fluid, Appendix A
definition – anti-icing, Appendix A
definition – buffer. See freezing point buffer
definition – check, Appendix A
definition – check, post-deicing. See definition – post deicing/anti-icing check
definition – check, preflight. See definition – preflight check
definition – clear ice, Appendix A
definition – cold soaked wing, Appendix A
definition – critical surface, Appendix A
definition – deicing fluid, Appendix A
definition – deicing, Appendix A
definition – deicing/anti-icing, Appendix A
definition – fluid, Newtonian, Appendix A
definition – fluid, non-Newtonian, Appendix A
definition – freezing drizzle, Appendix A
definition – freezing fog, Appendix A
definition – freezing point buffer, Appendix A
definition – freezing point, Appendix A
definition – freezing rain, light, Appendix A
definition – frost, Appendix A
definition – frost, active, Appendix A
definition – hail, Appendix A
definition – high humidity on cold soaked wing, Appendix A
definition – high humidity, Appendix A
definition – hoarfrost, Appendix A
definition – HOT, Appendix A
definition – ice crystals, Appendix A
definition – ice pellets, Appendix A
definition – post deicing/anti-icing check, Appendix A
definition – pre-deicing-step, s 10.7.2
definition – preflight check, Appendix A
definition – pretakeoff check, Appendix A
definition – pseudoplastic, Appendix A
definition – rain on cold soaked wing, Appendix A
definition – rain, Appendix A
definition – rime, Appendix A
definition – shear force, Appendix A
definition – slush, Appendix A
definition – snow, Appendix A
deicing – definition, Appendix A
deicing fluid – definition, Appendix A
deicing program – air traffic control tower, s 3.1.3
deicing program – ATC, s 3.1.3
deicing program – flight operations plan, s 3.1
deicing program – ground operations plan, s 3.2
deicing program – inclusion in aircraft operator manual for flightcrews, s 3.1.3
deicing program – management plan, s 3
deicing program – manager responsibilities, s 3
deicing/anti-icing decision – after flightcrew is on board, s 10.4.1
deicing/anti-icing decision – overnight aircraft prior to flightcrew arrival, s 10.4.1
deicing/anti-icing decision – contamination check by flightcrew, s 10.4.1
deicing/anti-icing decision – contamination check by ground crew, s 10.4.1
distant learning. See training, computer based
e-learning. See training, computer based
Embraer E120 spray area diagram, Appendix D
Embraer E135/E140/E145 spray area diagram, Appendix D
Embraer E170/175 spray area diagram, Appendix D
Embraer E190/E195 spray area diagram, Appendix D
Fairchild Dornier D328 Propeller spray area diagram, Appendix D
Fairchild Dornier J328 Jet spray area diagram, Appendix D
Fairchild Metro/Merlin spray area diagram, Appendix D
flight control check, s 10.11.1
flight personnel. See flightcrew
fluid application – maximum temperature – training
fluid manufacturer documentation – acceptance field tests, s 5.4.1
fluid manufacturer documentation – certificate of analysis, s 5.4.1
fluid manufacturer documentation – fluid transfer system requirements, s 5.2.2
fluid manufacturer documentation – fluid, heating of, s 5.2.3
fluid manufacturer documentation – freezing point data, s 5.4.1
fluid manufacturer documentation – pH limits, s 5.4.2
fluid manufacturer documentation – quality assurance checks, s 5.4.1
fluid manufacturer documentation – refractive index limits, ss 5.4.1, 5.4.2
fluid manufacturer documentation – safety data sheet, s 7.1.1
fluid manufacturer documentation – spray distance, s 10.7.1.4
fluid manufacturer documentation – storage tank requirements, s 5.1
fluid manufacturer documentation – viscosity limits, ss 5.4.2, 11.4
fluid manufacturer documentation – visual check test, s 5.4.1
fluid, Newtonian – definition, Appendix A
fluid, non-Newtonian – definition, Appendix A
foam confused as snow – training, s 10.7.1.5
Fokker F70/F100 spray area diagram, Appendix D
freezing drizzle – definition, Appendix A
freezing fog – definition, Appendix A
freezing point – definition, Appendix A
freezing point buffer – definition, Appendix A
freezing rain, light – definition, Appendix A
frost – definition, Appendix A
frost, active – definition, Appendix A
frost, active – formation conditions, Appendix A
gate departure check[^73] – APU free of contamination, s 3.6
gate departure check – critical sensing devices free of contamination, s 3.6
gate departure check – doors and door seals free of contamination, s 3.6
gate departure check – cockpit windows clean, s 3.6
gate departure check – passengers informed of remote deicing, s 3.6
gate departure check – tires not frozen to ramp, s 3.6
Gulfstream spray area diagram, Appendix D
hail – definition, Appendix A
Hawker Siddeley HS 748 spray area diagram, Appendix D
heat loss. s 10.7.1.1
high humidity – definition, Appendix A
high humidity on cold soaked wing – definition, Appendix A
hoarfrost – definition, Appendix A
ICAO language proficiency rating scale, Rationale at p 1, s 10.5.6, Appendix F
ice crystals – definition, Appendix A
ice pellets – definition, Appendix A
ice, removal of – training, s 10.7.1.6
Ilyushin IL62 spray area diagram, Appendix D
Ilyushin IL76 spray area diagram, Appendix D
Ilyushin IL96 spray area diagram, Appendix D
language proficiency, ICAO, Rationale p 1, Appendix F
Learjet spray area diagram, Appendix D
Lockheed C-130 spray area diagram, Appendix D
Lockheed L-1011 spray area diagram, Appendix D
McDonnell Douglas DC-10/MD-10/MD-11 spray area diagram, Appendix D
McDonnell Douglas DC-8 spray area diagram, Appendix D
McDonnell Douglas DC-8 spray area diagram, Appendix D
McDonnell Douglas DC-9 spray area diagram, Appendix D
McDonnell Douglas MD-80/MD-90 spray area diagram, Appendix D
no spray zones, Appendix D
non-Newtonian fluid. See fluid, non-Newtonian
personal protective equipment, s 7.2.3
post deicing/anti-icing – definition, Appendix A
post deicing/anti-icing check – definition, Appendix A
post deicing/anti-icing check – integral part of deicing/anti-icing process, Appendix A
pre-deicing process, s 10.7.2
pre-decing-step. See pre-deicing process
preflight check – by flightcrew, Appendix A
preflight check – by ground crew, Appendix A
preflight check – definition, Appendix A
preflight check – walk-around, Appendix A
pretakeoff check – definition, Appendix A
pretakeoff contamination check, Appendix A
protective equipment, personal, s 7.2.3
pseudoplastic – definition, Appendix A

[^73]: Gate departure check is the series of steps and checks to be made at the gate before an aircraft taxies to the off-gate deicing area.
rain – definition, Appendix A
rain on cold soaked wing – definition, Appendix A
refractometer – dual scale caution, s 5.4.1
refractometer, use of, s 5.4.1
rime – definition, Appendix A
SAAB 340/2000 spray area diagram, Appendix D
shear force – definition, Appendix A
Short 360 spray area diagram, Appendix D
simulator, deicing. See training, computer based deicing simulator
slush – definition, Appendix A
snow – definition, Appendix A
snow removal, manual – training, s 10.7.1.1.5
snow, blowing, s 10.4
snow, foam confused as – training, s 10.7.1.5
spay zones, Appendix D
trainer qualification, Rationale at p 1
training – air conditioning, s 10.6.4
training – airframe manufacturer requirements, s 10.6.1
training – all clear signal, s 10.13
training – anti-icing code, s 10.12.7
training – approval, s 9.1
training – APU bleed air, s 10.6.1
training – by trained and qualified personnel, s 4.1
training – clean aircraft concept, s 4.7.1
training – clear ice, s 10.2
training – communications with flightcrew – English language, ss 10.5.5, 10.6.6
training – communications with flightcrew, s 10.5.1
training – communications, s 4.7.3
training – computer based – minimum requirements, Table E1
training – computer based – oversight, s 4.1
training – computer based simulator – oversight, s 4.3
training – computer based simulator, s 4.3
training – computer based, Rationale at p 1
training – computer based, s 4.1
training – contamination recognition, ss 4.7.17, 13
training – critical surface – air conditioning inlets/outlets, s 10.1.4
training – critical surface – airstream direction detector probes, s 10.1.2
training – critical surface – angle of attack sensors, s 10.1.2
training – critical surface – engine inlets, s 10.1.2
training – critical surface – fuel tank vents, s 10.1.6
training – critical surface – fuselage, s 10.1.7
training – critical surface – landing gear doors, s 10.1.5
training – critical surface – landing gear, s 10.1.5
training – critical surface – pitot heads, s 10.1.2
training – critical surface – static ports, s 10.1.2
training – critical surface – wing, tail and control surfaces, s 10.1.1
training – critical surface inspection, s 10.1
training – deicing facilities, s 4.7.6
training – deicing log, s 10.14
training – deicing procedures, s 4.7.13
training – deicing report, s 10.12.6
training – deicing technology, alternate, s 10.7.2
training – deicing unit procedures, s 4.7.6, 6
training – deicing unit, Appendix C
training – deicing/anti-icing decision – after flightcrew is on board, 10.4.1
training – deicing/anti-icing decision – flightcrew check, s 10.4.1
training – deicing/anti-icing decision – overnight aircraft prior to flightcrew arrival, s 10.4.1
training – deicing/anti-icing decision – preflight check by flightcrew, s 10.4.1
training – deicing/anti-icing decision – preflight check by ground crew, s 10.4.1
training – dispatch, s 4.7
training – emergency procedures, s 4.7.9
training – engine manufacturer requirements, s 10.6.1
training – engines-on deicing – center mounted engine aircraft, s 10.6.4.1.2.2
training – engines-on deicing – jet aircraft, s 10.6.4.1.2
training – engines-on deicing – propeller aircraft, s 10.6.4.1.1
training – engines-on deicing – wing mounted aircraft, s 10.6.4.1.2.1
training – engines-on deicing, s 10.6.4
training – environmental impact, s 8.2
training – environmental protection, s 8
training – environmental regulations, s 8.3
training – examination – computer based training, s 4.3.3
training – examination – plagiarism, s 4.3.3
training – examination, s 4.4
training – fall protection equipment, use of, s 7.2.3
training – first aid, ss 4.7.9, 7.3
training – flight control check, s 10.11.1
training – cockpit windows, care of, s 10.6.10
training – flightcrew, s 4.7
training – fluid application – air conditioning off, s 10.6.4
training – fluid application – airframe manufacturer requirements, s 10.6.1
training – fluid application – APU bleed air off, s 10.6.4
training – fluid application – brakes and wheels, s 10.6.5
training – fluid application – cavities, s 10.6.7
training – fluid application – control surface cavities, s 10.6.7
training – fluid application – control surface hinge areas, s 10.6.12
training – fluid application – engine manufacturer requirements, s 10.6.1
training – fluid application – engines, s 10.6.7
training – fluid application – exhausts, s 10.6.5
training – fluid application – intakes, s 10.6.7
training – fluid application – landing gears, s 10.6.11
training – fluid application – maximum pressure, s 10.7.6.1
training – fluid application – outlets, s 10.6.7
training – fluid application – sensors, 10.6.6
training – fluid application – slipperiness, s 10.6.9
training – fluid application – symmetrical, s 10.6.3
training – fluid application – temperature, s 10.7.1.6
training – fluid application – thrust reversers, s 10.6.5
training – fluid application – wheel bays, s 10.6.11
training – fluid blending, s 5.4.3
training – fluid concentration check, s 5.4.3
training – fluid failure recognition, s 13
training – fluid heating, s 5.2.3
training – fluid residues, s 10.8.5
training – fluid sampling, ss 4.7.7, 5.3
training – fluid selection, s 4.7.11
training – fluid storage and handling, s 4.7.7, 5
Training – fluid testing, ss 4.7.7, 5.4, 5.42
Training – fluid transfer systems, s 5.2.1
Training – footwear, safety, use of, s 7.2.3
Training – freezing point depressant, identity of, s 8.1
Training – gate departure check, s 10.4.2
Training – gate departure check, s 3.6
Training – gloves, use of, s 7.2.3
Training – ground crew initial, s 4.4.1.1
Training – ground crew recurrent, s 4.4.1.2
Training – ground crew, s 4.7
Training – ground icing conditions, s 4.7.2
Training – hazards of ice, snow and frost, s 4.7.1
Training – health and safety, s 4.7.9, 7
Training – hearing protection, use of, s 7.2.3
Training – HOT, use of, s 4.7.14, 10.6.2, 11
Training – human factors, s 7.1.2
Training – ice removal, s 10.7.1.6
Training – landing gear, deicing of, s 10.6.10
Training – no spray zones, ss 10.6.5–10.6.8
Training – personal protective equipment, use of, s 7.2.3
Training – personnel to be trained – dispatch, s 4.2.1
Training – personnel to be trained – flight crew, s 4.2.1
Training – personnel to be trained – ground crew, s 4.2.1
Training – personnel to be trained – service provider, s 9
Training – post deicing/anti-icing check, s 10.11
Training – practical evaluation, s 4.4.1
Training – pretakeoff checks, s 4.7.15
Training – refractometer, use of, s 5.4.1
Training – representative surfaces, ss 4.7.15, 12.1
Training – respiratory protection, use of, s 7.2.3
Training – safety equipment, use of, s 7.2.3
Training – sample label, s 5.3.4
Training – sample labelling, s 5.3.4
Training – samples, care of, s 5.3.5
Training – seat belt, use of, s 7.2.3
Training – service providers, s 9
Training – slipperiness hazard, s 10.6.9
Training – train-the-trainer, Rationale at p 1, s 9.11
Training – weather, s 4.7.2
Training – weatherproof clothing, use of, s 7.2.3
Tupolev T204 spray area diagram, Appendix D

ARP5149BDA (Digital Annex for ARP5149B)

Revised 2014-08-05 by SAE G-12 T.

ARP5149BDA is the Digital Annex (DA) of ARP5149B. It contains the full-PDF version of ARP5149B, Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground, as well as jpeg format files of Appendix D, Application Guidelines Configuration, Critical Component,
and Spray Area Diagrams for Aircraft. The .jpeg diagram files may be used by purchasers in accordance with the terms of the included license agreement.

ARP5646 Quality Program Guidelines for Deicing/Anti-Icing of Aircraft on the Ground

Issued 2008-08-19 by SAE G-12 T.

ARP5646 provides a form, whose format is a checklist, to perform audits of aircraft ground deicing/anti-icing programs. An auditor may use this form, at a given location where deicing is performed, by an airline or service provider, to determine if the aircraft ground deicing program at that location meets applicable standards, recommended practices, and the regulatory requirements.

The form has five parts

1. *Audit Data.* The audit data identifies the parties involved in the audit and the standards against which the audit is performed.
2. *Audit Results.* This sections compiles the number of findings, lists corrective actions, if follow-up audits are required, recommended intervals for future audits, and provides a place for the auditor and approver to sign.
3. *Checklist.* This section provides a list of items to be audited in the form of questions and space for the auditor to list comments and recommendations.
4. *Comments.* This section provides space for extra comments.
5. *Findings.* This is where the auditor lists findings, their status and date due.

It is the objective of SAE G-12 E to replace ARP5646 by AS6332, in draft form at this time, at the earliest opportunity. The intent is for AS6332 is to become a global standard adopted by all countries, ICAO, and IATA as a new global standard for aircraft ground deicing quality program.

Keywords:
AEA recommendations, s 3
aircraft ground deicing program audit, Foreword p 1, s 1
audit – definition, Foreword at p 1
audit checklist – airline personnel access to deicing site, s 5.07
audit checklist – availability of ground deicing program manuals, s 5.03
audit checklist – availability of the latest version of the deicing standards, s 5.03
AS6286 Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground

Issued 2016-11-29 by SAE G-12 T.

This document sets the standard for the qualification and training programs as well as examinations for personnel involved in aircraft ground deicing.

Keywords:
- computer based deicing simulator – minimum requirement, s 3.21
- ICAO language proficiency rating scale, s 3.22
- fluid manufacturer documentation – safety data sheet, s 3.20.8
- training – aircraft manufacturer recommendations, s 1.1
- training – computer based training simulator, ss 3, 3.20
- training – CBT, s 3
- training – certificate, s 3.17
- training – clean aircraft concept, s 3.23.1
- training – computer based deicing simulators, ss 3, 3.20
- training – computer based training, s 3
- training – deicing/anti-icing fluids, ss 3.23.7–3.27.8
- training – deicing/anti-icing initiation conditions – clear ice
- training – deicing/anti-icing initiation conditions – freezing fog, s 3.23.3
- training – deicing/anti-icing initiation conditions – freezing rain, s 3.23.3
- training – deicing/anti-icing initiation conditions – high humidity on cold soaked wing, s 3.23.3
- training – deicing/anti-icing initiation conditions – ice accretion in-flight, s 3.23.3
- training – deicing/anti-icing initiation conditions – rain on cold soaked wing, s 3.23.3
- training – deicing/anti-icing initiation conditions – snow, frost and ice, s 3.23.3
- training – deicing/anti-icing initiation conditions, ss 3.23.2–3.23.3
- training – dispatch personnel, s 3
- training – distant learning, s 3
- training – effectiveness measured, s 3
- training – e-learning, s 3
- training – engine manufacturer recommendations, s 1.1
- training – evaluation. See training – examination

74 Clear ice is a deicing/anti-icing condition that should be added to section 3.23.3.
training – examination – CBT, s 3
training – examination – computer based training, s 3
training – examination – failed, s 3.17
training – examination – plagiarism, s 3
training – examination – practical, s 3, s 3.15, 3.16
training – examination – theoretical, ss 3, 3.15
training – examination, ss 3, 3.2, A.5.6
training – flightcrew, s 3
training – ground crew, s 3
training – hazards of ice, snow and frost, s 3.23.1
training – head of training, s 3
training – instructor. See training – trainer
training – language proficiency rating scale, ICAO, s 3.22
training – language, English, s A.5.3
training – language, other, s A.5.3, A.5.5
training – lessons learned, s 3
training – local variations, s 1.1, 3.4
training – management plan, s 3
training – manager responsible, s 3
training – new equipment, s 3
training – personnel trained and qualified, ss 1.1, 1.4.1, 3, 3.19
training – practical annual, ss 1.4.3, 3.19
training – practical initial, ss 1.4.2, 3.19
training – practical recurrent, ss 1.4.3, 3.19
training – qualification level – cabin crew, s 3.2
training – qualification level – deicing coordinator, s 3.2, 3.10
training – qualification level – deicing instructor, s 3.2, 3.9
training – qualification level – deicing operator, s 3.2, 3.6
training – qualification level – deicing supervisor, s 3.2, 3.7, 3.7
training – qualification level – deicing unit driver, s 3.2, 3.5
training – qualification level – deicing vehicle driver. See training – qualification level – deicing unit driver
training – qualification level – dispatch personnel 75
training – qualification level – flightcrew, s 3.2
training – qualification level – fluid quality inspector, s 3.2, s 3.11
training – qualification level – head of deicing training, s 3.2, 3.12
training – qualification level – laboratory staff. See training – qualification level – fluid quality inspector
training – qualification level – pre/post-deicing inspector, s 3.2, 3.8
training – records – date, s 3
training – records – examination results, s 3
training – records – on-job experience, s 3.2
training – records – on-job-training, s 3
training – records – qualification level, s 3.2
training – records – subject matter, s 3, 3.3
training – records – trainer name, s 3
training – records – proof of qualification, as, ss 3, 3.19
training – records, ss 3, 3.17, 3.19
training – standards, use of latest edition, s 3.19
training – theoretical initial, ss 1.4.4, s 3.2, 3.19
training – theoretical recurrent, ss 3.2, 3.19
training – time of training, estimated ss 1.1, 3.1

75 Section 3.2 appears to be missing a training qualification level for dispatch personnel, yet section 3 call for training of dispatch personnel.
training – trainer initial and recurrent training, s 3
training – trainer qualification, s 3
training – training and qualification program, s 1.4.1, 3
training – training plan, standard, s 3.20
training – validity to calendar year end, s 3.18
training fundamentals – case studies, s A.5.4
training fundamentals – demonstration, s A.5.4
training fundamentals – examinations and evaluations, ss A.5.3, A.5.6
training fundamentals – forgetfulness, s A.5.2
training fundamentals – human factors, s A.5.4
training fundamentals – learning process, ss A.5.1, A.5.2
training fundamentals – lectures, s A.5.4
training fundamentals – misconceptions, s A.5.4
training fundamentals – motivation, ss A.5.3, A.5.4
training fundamentals – professionalism, s A.5.1
training fundamentals – training aids, s A.5.4, A.5.5
training fundamentals – training material, s A.5.4
training fundamentals – training methods, s A.5.4
training fundamentals – training process, ss A.5.1, A.5.2
training fundamentals – unsafe habits, s A.5.1
training fundamentals – what if scenarios, s A.5.4

AS6286/1 Processes Including Methods

Issued 2016-11-01 by SAE G-12 T.

This document sets the standard for training of personnel with respect to processes and methods of deicing/anti-icing aircraft on the ground.

Keywords:
check, flight control. See flight control check
check, gate departure. See gate departure check
check, pretakeoff. See pretakeoff check
clear ice, conditions conducive to, s 3.2
clear ice, detection of, s 3.2
clear ice, difficulty to detect, s 3.2
definition – pre-deicing process, s 3.14.6
deicing/anti-icing decision – after flightcrew is on board, s 3.5
deicing/anti-icing decision – contamination check by flightcrew, s 3.5
deicing/anti-icing decision – contamination check by ground crew, s 3.5
deicing/anti-icing decision – overnight aircraft prior to flightcrew arrival, s 3.5
flight control check, s 3.17.1
fluid manufacturer documentation – recycling, s 6.9.4
foam confused as snow, s 3.14.4
gate departure check — APU free of contamination, s 3.6
gate departure check – critical sensing devices free of contamination, s 3.6
gate departure check – doors and door seals free of contamination, s 3.6

76 Gate departure check is the series of steps and checks to be made at the gate before an aircraft taxies to the off-gate deicing area.
gate departure check – cockpit windows clean, s 3.6
gate departure check – passengers informed of remote deicing, s 3.6
gate departure check – tires not frozen to ramp, s 3.6
heat loss, ss 3.14.2, 6.1.2.1, 6.5, 8.4.1
ICAO alphabet, s 6.8.7
ICAO language proficiency rating scale, s 3.7
preflight check – by flightcrew, s 3.3
preflight check – by ground crew, s 3.3
snow, blowing, s 3.4
snow, foam confused as, s 3.14.4
training – aerodynamics – aerodynamic forces, s 6.1.2
training – aerodynamics – angle of attack, s 6.1.3
training – aerodynamics – contamination, effect of, ss 6.1.6, 6.1.9
training – aerodynamics – critical surfaces, s 6.1.5
training – aerodynamics – failed fluids, effect of, s 6.1.10
training – aerodynamics – flaps and slats, s 6.1.5
training – aerodynamics – fluids, effects of, s 6.1.10
training – aerodynamics – frost, effect of, ss 6.1.7, 6.1.8
training – aerodynamics – fundamentals, s 6.1
training – aerodynamics – fuselage, s 6.1.5
training – aerodynamics – laminar and turbulent flow, s 6.1.3
training – aerodynamics – stall, 6.1.8
training – aerodynamics, s 6.1
training – all clear signal, s 3.17.5
training – anti-icing code, ss 3.17.3, 3.17.4, 6.8.2, 6.8.3
training – clean aircraft concept, ss 6.2.1, 6.4
training – clear ice, s 3.2
training – communications with flightcrew – English language, s 3.7
training – communications with flightcrew, ss 3.7, 3.17.2, 3.17.3, 4.3, 6.8.1, 6.8.4, 6.8.5
training – critical surface – air conditioning inlets/outlets, s 10.1.4
training – critical surface – airstream direction detector probes, s 10.1.2
training – critical surface – angle of attack sensors, s 10.1.2
training – critical surface – engine fan blades, s 3.1.3
training – critical surface – engine inlets, ss 3.1.2, 6.8.2
training – critical surface – flaps, s 3.1.1
training – critical surface – fuel tank vents, s 3.1.6
training – critical surface – fuselage, s 10.1.7
training – critical surface – landing gear doors, s 3.1.5
training – critical surface – landing gear, s 3.1.5
training – critical surface – pitot heads, s 3.1.2
training – critical surface – static ports, s 3.1.2
training – critical surface – wing, tail and control surfaces, s 3.1.1
training – critical surface inspection, s 3.1
training – deicing log, s 3.17.6
training – deicing/anti-icing decision – after flightcrew is on board, 3.5
training – deicing/anti-icing decision – contamination check by flightcrew, s 3.5
training – deicing/anti-icing decision – contamination check by ground crew, s 3.5
training – deicing/anti-icing decision – overnight aircraft prior to flightcrew arrival, s 3.5
training – engine ingestion hazard, ss 3.11, 3.12
training – engines-off deicing, s 3.9
training – engines-on deicing – center mounted engine aircraft, s 3.13
training – engines-on deicing – jet aircraft, s 3.11
training – engines-on deicing – propeller aircraft, s 3.10
training – engines-on deicing – wing mounted aircraft, s 3.12
training – engines-on deicing, s 3.9
training – environmental considerations, s 5
training – environmental impact, s 5
training – environmental protection, ss 5, 6.9.1, 6.9.2, 6.9.3
training – environmental regulations, s 5
training – flight control check, s 3.17.1
training – cockpit windows, care of, s 3.8
training – fluid application – air conditioning off, s 3.8
training – fluid application – airframe manufacturer requirements, s 3.8
training – fluid application – APU bleed air off, s 3.8
training – fluid application – brakes and wheels, s 3.8
training – fluid application – cabin windows, s 3.8
training – fluid application – cavities, s 3.8
training – fluid application – cockpit windows, s 3.8
training – fluid application – control surface cavities, s 3.8
training – fluid application – control surface hinge areas, s 3.8
training – fluid application – engine manufacturer requirements, s 3.8
training – fluid application – engines, s 3.8
training – fluid application – exhausts, s 3.8
training – fluid application – guidelines, use of, s 3.16.3
training – fluid application – intakes, s 3.8, 3.11
training – fluid application – landing gears, s 3.8
training – fluid application – maximum pressure, s 3.14.5
training – fluid application – no spray zones, s 3.8
training – fluid application – one-step, s 3.16.1
training – fluid application – outlets, s 3.8
training – fluid application – sensors, s 3.8
training – fluid application – slipperiness, s 3.8
training – fluid application – strategy, ss 3.15.3, 3.15.3.1
training – fluid application – symmetrical, s 3.8
training – fluid application – thrust reversers, s 3.8
training – fluid application – two-step, s 3.16.2
training – fluid application – wheel bays, s 3.8
training – fluid recovery, s 6.9.3
training – foam confused as snow, s 3.14.4
training – freezing point depressant, identity of, s 5
training – frost, removal of, s 3.14.3
training – gate departure check, s 3.6
training – HOT, use of, s 3.8
training – ICAO alphabet, s 6.8.7
training – ice, light, removal of, s 3.14.3
training – ice, removal of, s 3.14.5
training – jet blast hazard, ss 3.11, 3.12
training – landing gear, deicing of, s 3.8
training – no spray zones, s 3.8
training – post deicing/anti-icing check, s 3.17
training – preflight check, s 3.3
training – pretakeoff check, s 4
training – pretakeoff contamination check, s 4.2
training – radio communications, ss 6.8.6, 6.8.7, 6.8.7.1
training – recycling, s 6.9.4
training – representative surfaces, s 4.1
Aircraft Deicing Documents – Issued by the SAE G-12 Training and Quality Control Committee

training – slipperiness hazard, s 3.8, 6.3
training – snow, removal of, s 3.14.4
training – windows, flightcrew, care of, s 3.8

AS6286/2 Equipment

Issued 2016-11-22 by SAE G-12 T.

This document sets the standard for training of personnel involved in aircraft ground deicing with respect to deicing/anti-icing equipment.

Keywords:
training – deicing unit – boom operation from lower control station, s 8
training – deicing unit – braking test, s A.1.2
training – deicing unit – closed cabin layout, s 5.2
training – deicing unit – communication system, s A.1.6
training – deicing unit – communications between driver and sprayer, s A.1.2
training – deicing unit – communications monitoring, s A.1.3
training – deicing unit – deicing data collection, s A.1.8
training – deicing unit – emergency hydraulic pump, s 8
training – deicing unit – emergency lowering of boom, s A.1.3
training – deicing unit – emergency shut off, s A.1.3
training – deicing unit – emergency stop switch, s 8
training – deicing unit – emergency stop, s A.1.3
training – deicing unit – filling of, s A.1.2
training – deicing unit – filling station, s A.1.5
training – deicing unit – fire suppression systems, s 8
training – deicing unit – fluid concentration monitoring, s A.1.7
training – deicing unit – fluid flow rate, s A.1.7
training – deicing unit – fluid overfilling prevention system, s A.1.3
training – deicing unit – fluid pressure monitoring, ss A.1.3, A.1.4, A.1.7
training – deicing unit – fluid temperature monitoring, s A.1.3
training – deicing unit – labelling, ss A.1.4, A.1.5
training – deicing unit – load capacity of basket/cabin, s A.1.4
training – deicing unit – maximum speed with boom raised 6 km/h, s 4
training – deicing unit – maximum velocity of boom, s A.1.4
training – deicing unit – maximum wind with boom elevated, s .A1.4
training – deicing unit – nozzle, use of, s A.1.7
training – deicing unit – open basket layout, s 5.1
training – deicing unit – underwing spraying, s A1.1.1
training – deicing unit – walk-around pre-operation check – basket/cabin, s 7
training – deicing unit – walk-around pre-operation check – boom, s 7
training – deicing unit – walk-around pre-operation check – emergency and safety equipment, s 7
training – deicing unit – walk-around pre-operation check – engine, s 7
training – deicing unit – walk-around pre-operation check – fuel, s A.1.2
training – deicing unit – walk-around pre-operation check – nozzle, s 7
training – deicing unit – walk-around pre-operation check – windshield washer fluid, s A.1.2
training – deicing unit auxiliary engine – asphyxiation hazard in poorly ventilated areas, s 4
training – deicing unit combustion heaters – asphyxiation hazard in poorly ventilated areas, s 4
training – deicing unit engine – asphyxiation hazard in poorly ventilated areas, s 4
AS6286/3 Fluids

Issued 2016-12-06 by SAE G-12 T.

This document sets the standard for training of personnel involved in aircraft ground deicing with respect to deicing/anti-icing fluids.

Keywords:
AMIL, s 5.1
APS Aviation, s 5.1
fluid manufacturer documentation – acceptance field tests, s 3.7.1
fluid manufacturer documentation – aerodynamic acceptance data, s 5.1.2
fluid manufacturer documentation – certificate of analysis, s 3.7.1
fluid manufacturer documentation – color, ss 3.7.1, 5.1, 5.1.4, 5.1.5
fluid manufacturer documentation – concentration limits, s 5.1.4
fluid manufacturer documentation – field viscosity check, ss 3.7.2, 5.1.6.2
fluid manufacturer documentation – fluid transfer system requirements, s 3.3, 3.4, 5.1.7
fluid manufacturer documentation – fluid, heating of, ss 3.5, 5.1.7
fluid manufacturer documentation – freezing point data, s 3.7.1
fluid manufacturer documentation – LOUT, s 5.1.2
fluid manufacturer documentation – pH limits, s 3.7.2
fluid manufacturer documentation – refractive index limits, ss 3.7.1, 3.7.2
fluid manufacturer documentation – storage tank requirements, ss 3.1, 5.1.6.2
fluid manufacturer documentation – viscosity limits, ss 3.7.2, 4.3
fluid manufacturer documentation – visual check test, s 3.7.1
refractometer – dual scale caution, s 3.7.1
SMI, s 5.1
training – aerodynamics acceptance test, s 5.1.2
training – certificate of analysis, s 3.7.1
training – deicing unit, new – cleaning of, s 3.3
training – field tests, s 3.7.1
training – fluid blending – water quality, s 3.8
training – fluid blending, s 3.8
training – fluid concentration check, ss 3.5, 3.7.3
training – fluid contamination, s 5.1.6
training – fluid heat degradation, ss 3.2, 3.5
training – fluid heating, ss 3.2, 3.5
training – fluid hoses, s 3.3
training – fluid manufacturer recommendations – fluid handling system, s 3.2
training – fluid manufacturer recommendations – fluid heating, ss 3.5, 5.1.6.2
training – fluid manufacturer recommendations – fluid reception, s 3.7.1
training – fluid manufacturer recommendations – fluid transfer system, s 3.4
training – fluid manufacturer recommendations – particles, s 3.7.1
training – fluid manufacturer recommendations – samples, s 3.6.5
training – fluid manufacturer recommendations – sampling, ss 3.6.5, 3.7.1
training – fluid manufacturer recommendations – storage container materials, ss 3.1, 5.1.6.2
training – fluid manufacturer recommendations – storage temperature limits, s 3.1
training – fluid manufacturer recommendations – test frequency, s 3.7.2
training – fluid shear degradation, ss 3.2, 3.3
training – fluid storage – fluid manufacturer recommendations, s 3.1
training – fluid storage – labelling, s 3.1, 5.1.6
training – fluid storage – regulatory requirements, s 3.1
training – fluid storage – tank level, s 3.1
training – fluid storage – temperature, maximum, ss 3.1, 3.5
training – fluid storage – temperature, minimum, s 3.1
training – fluid storage – totes, s 3.3
training – fluid storage – UV light, effect of, s 3.1
training – fluid storage, ss 3.1, 5.1.6, 5.1.6.2
training – fluid testing – appearance, ss 5.1.6.1, 5.1.6.2
training – fluid testing – field viscosity check, s 5.1.6.2
training – fluid testing – fluid manufacturer specification, ss 3.7.1, 3.7.2
training – fluid testing – pH, ss 5.1.6.1, 5.1.6.2
training – fluid testing – refraction, ss 5.1.6.1, 5.1.6.2
training – fluid testing frequency – fluid manufacturer recommendations, s 3.7.2
training – fluid testing frequency, ss 3.7, 3.7.2
training – fluid testing, ss 3.5, 5.1.6.1, 5.1.6.2
training – fluid transfer system – labels, s 3.3
training – fluid transfer system, dedicated, s 3.3
training – fluid transfer system, ss 3.3, 5.1.6
training – fluid, reception of, ss 5.1.6, 5.1.6.2
training – freezing point buffer, s 3.8
training – frost prevention, local, s 5.4
training – galvanic couples, s 5.1.6.2
training – HHET, s. 5.1.1
training – HOT, use of, ss 4, 5.1.10, 5.2, 5.3, 5.3.1
training – LOUT relationship to aircraft type (high speed, low speed)77
training – LOUT relationship to OAT, s 3.8
training – LOUT, s 3.8
training – materials compatibility, s 5.1.3
training – refractometer – dual scale caution, s 3.7.1
training – refractometer, use of, s 3.7.1
training – sample bottles, s 3.6.1
training – sample label, s 3.6.4
training – sample labelling, ss 3.6.1, 3.6.4
training – samples, care of, s 3.6.5

77 Relationship of LOUT to OAT is described in section 3.8. Relationship of LOUT to type of aircraft (high speed/low speed) should be part of training as well.
This document sets the standard for training of personnel involved in aircraft ground deicing with respect to weather.

It is important for personnel performing deicing to understand weather. Weather determines how freezing or frozen precipitation will affect the process of deicing, the protection time of deicing/anti-icing fluids and the failure of fluids. This standard list topics related to weather that should be covered in training, such as precipitation types including frost formation, fluid failure recognition, and weather reports (METAR and TAF).

Keywords:
clear ice – definition, s 4.1.3.3
clear ice, conditions conducive to, ss 4.1.3.3, 4.1.3.4
cold front. See front, cold
cold soaking – definition, s 4.1.3.4
cold soaking – fuel caused, s 4.1.3.4
cold soaking, conditions conducive to, ss 4.2.3.4, 4.3
cold soaking, fueling, s 4.1.3.4
cold soaking, refueling, s 4.1.3.4
condensation – definition, s 4.1.3.2
definition – clear ice, s 4.1.3.3
definition – cold soaking, s 4.1.3.4
definition – condensation, s 4.1.3.2
definition – dewpoint, s 4.1.3.6
definition – drizzle, s 4.1.3.7
definition – evaporation, s 4.1.3.2
definition – freezing drizzle, s 4.1.3.8
definition – freezing fog, s 4.1.3.9
definition – freezing rain, heavy, s 4.1.3.15
definition – freezing rain, light, s 4.1.3.13
definition – freezing rain, moderate, s 4.1.3.15
definition – freezing, s 4.1.3.2
definition – front, cold, s 4.1.3.5
definition – front, warm, s 4.1.3.24
definition – frost, s 4.1.3.10
definition – frost, active, s 4.1.3.1
definition – hail, small, s 4.1.3.12
definition – high humidity on cold soaked wing, s 4.1.3.16
definition – hoarfrost, s 4.1.3.10
definition – humidity, relative, 4.1.3.18
definition – ice pellets, s 4.1.3.12
definition – LOUT, s 4.1.3.14
definition – melting, s 4.1.3.2
definition – rain and snow, s 4.1.3.17
definition – rain on cold soaked wing, s 4.1.3.16
definition – saturation, s 4.1.3.19
definition – slush, s 4.1.3.23
definition – snow grains, s 4.1.3.21
definition – snow pellets, 4.1.3.22
definition – snow, s 4.1.3.20
definition – sublimation, s 4.1.3.2
definition – water vapor, 4.1.3.25
dewpoint – definition, s 4.1.3.6
drizzle – definition, s 4.1.3.7
evaporation – definition, s 4.1.3.2
fluid failure description – dulling of surface reflectivity, s 3
fluid failure description – graying of surface reflectivity, s 3
fluid failure description – no absorption of precipitation, s 3
fluid failure description – presence of frozen contamination on the fluid, s 3
fluid failure description – snow accumulation, random s 3
fluid failure description – snow accumulation, s 3
fluid failure recognition, s 3
fluid failure, initial – downwind wing in crosswind, s 3
fluid failure, initial – leading and trailing edges, s 3
fluid manufacturer documentation – freezing point data, s 4.1.3.14
fluid manufacturer documentation – LOUT, s 4.1.3.14
fluid manufacturer documentation – refractive index limits, s 4.1.3.14
FOD, s 4.3.2
freezing – definition, s 4.1.3.2
freezing drizzle – definition, s 4.1.3.8
freezing fog – definition, s 4.1.3.9
freezing rain, heavy – definition, s 4.1.3.15
freezing rain, light – definition, s 4.1.3.13
freezing rain, moderate – definition, s 4.1.3.15
front, cold – definition, s 4.1.3.5
front, warm – definition, s 4.1.3.24
frost – definition, s 4.1.3.10
frost formation conditions, s 4.3.3
frost on fuselage, s 4.3
frost on lower horizontal stabilizer surface, s 4.3
frost on lower wing surface, s 4.3
frost, active – definition, s 4.1.3.1
frost, local, s 4.3
hail, small – definition, s 4.1.3.12
hazards of ice, snow and frost, s 4.3.2
high humidity on cold soaked wing – definition, s 4.1.3.16
hoarfrost – definition, s 4.1.3.10
hoarfrost, s 4.3
humidity, relative – definition, 4.1.3.18
ice pellets – definition, s 4.1.3.12
LOUT – definition, s 4.1.3.14
melting – definition, s 4.1.3.2
METAR, s 4.2.1
rain and snow – definition, s 4.1.3.17
rain on cold soaked wing – definition, s 4.1.3.16
rime, s 4.1.3.3
roughness, effect of, s 4.3.3
saturation – definition, s 4.1.3.19
slush – definition, s 4.1.3.23
snow – definition, s 4.1.3.20
snow grains – definition, s 4.1.3.21
snow pellets – definition, 4.1.3.22
sublimation – definition, s 4.1.3.2
TAF, s 4.2.2
training – clear ice, s 3
training – fluid failure recognition, s 3
training – weather, s 4
warm front. See front, warm
water vapor – definition, 4.1.3.25

AS6286/5 Health, Safety and First Aid

Issued 2016-09-22 by SAE G-12 T.

This document sets the standard for training of personnel involved in aircraft ground deicing in areas related to health, safety and first aid.

It is important for personnel performing deicing to understand the hazards that could affect them personally in deicing operations, the precautions and equipment to prevent accidents, human factors related to accidents and the reporting of accidents/incidents. This standard list topics that should be covered in training to ensure safety of the personnel involved in deicing.

Keywords:
fluid manufacturer documentation – safety data sheet, s 3.1
training – accident/incident reporting, s 4.5
training – aircraft movement hazard, s 4.4
training – APU blast hazard, s 4.4
training – communications, s 3.1
training – eye/face protection, use of, s 3.2
AS6286/6 Deicing/Anti-icing Diagrams/No Spray Zones

Issued 2016-12-05 by SAE G-12 T.

This documents provides aircraft diagrams with showing zones where deicing/anti-icing fluids may be applied, areas where fluids should be applied indirectly and where fluid should not be applied (no-spray zones). It also provides wing surface area, horizontal surface area, wingspan, aircraft category and suggested anti-icing fluid quantities for several commonly used aircraft.

Keywords
Airbus A300 spray area diagram, s 3.1.1
Airbus A310 dimensions, s 4.2.1.5
Airbus A310 spray area diagram, s 3.1.2
Airbus A318/319 spray area diagram, s 3.1.3

78 Jet suction hazard and engine ingestion hazard appear to be used synonymously.
79 See footnote 78.
Airbus A318/319/320/321 dimension, s 4.2.1.6
Airbus A320 spray area diagram, s 3.1.4
Airbus A321 spray area diagram, s 3.1.5
Airbus A330 dimensions, s 4.2.1.2
Airbus A330 spray area diagram, s 3.1.6
Airbus A340 dimensions, s 4.2.1.1
Airbus A340 spray area diagram, 3.1.7
Airbus A350 dimensions, s 4.2.1.8
Airbus A350 spray area diagram, s 3.1.8
Airbus A380 dimensions, s 4.2.1.3
Airbus A380 spray area diagram, s 3.1.9
Airbus A400M spray area diagram, s 3.1.10
aircraft category. See category, aircraft
category diagram, Figure 1
aircraft handedness, s 4.1.4
aircraft left-hand, s 4.1.4
aircraft right-hand, s 4.1.4
Antonov AN-12 dimensions, s 4.2.4.1
Antonov AN-124 dimensions, s 4.2.4.4
Antonov AN-70 dimensions, s 4.2.4.2
Antonov AN-74/AN-74T dimensions, s 4.2.4.3
APU fluid ingestion, s 4.1.3
APU glycol ingestion, s 4.1.3
area, wetted – definition, s 4.2
ATR ATR42/ATR72 dimensions, s 4.2.3.8,
ATR ATR42/ATR72 spray area diagram, s 3.1.11
Avro RJ dimensions, s 4.2.3.3
Avro RJ spray area diagram, s 3.1.12
BAe 146/Avro RJ dimensions, s 4.2.3.3
BAe 146/Avro RJ spray area diagram, s 3.1.12
BAe 748/HS 748 spray area diagram, s 3.1.13
BAe ATP dimensions, s 4.2.3.1
BAe Jetstream 31 dimensions, s 4.3.2.2
BAe Jetstream 41 spray area diagram, s 3.1.1
BAe Jetstream 41 dimensions, s 4.3.2.2
Beech 1900D dimensions, s 4.2.5.2
Beech Beechjet 400A dimensions, s 4.2.5.3
Beech King Air 350 dimensions, s 4.2.5.1
Beech King Air B200 dimensions, s 4.2.5.5
Beech King Air C90B/C90SE dimensions, s 4.2.5.4
Beechcraft B1900 spray area diagram, s 3.1.5
Boeing B707 dimensions, s 4.2.2.1
Boeing B717 dimensions, s 4.2.2.2
Boeing B717 spray area diagram, s 3.1.16
Boeing B727 dimensions, s 4.2.2.3
Boeing B727 spray area diagram, s 3.1.17
Boeing B737 dimensions, s 4.2.2.4
Boeing B737 spray area diagram, s 3.1.18
Boeing B747 dimensions, s 4.2.2.5
Boeing B747 spray area diagram, s 3.1.19
Boeing B757 dimensions, s 4.2.2.6
Boeing B757 spray area diagram, s 3.1.20
Boeing B767 dimensions, s 4.2.2.7
Boeing B767 spray area diagram, s 3.1.21
Boeing B777 dimensions, s 4.2.2.8
Boeing B777 spray area diagram, s 3.1.22
Boeing B787 dimensions, s 4.2.2.13
Boeing B787 spray area diagram, s 3.1.23
Boeing C-17 dimensions, s 4.2.2.12
Boeing C-17 spray area diagram, s 3.1.24
Boeing Douglas DC-8 dimensions, s 4.2.2.9
Boeing Douglas DC-8 spray area diagram, s 3.1.25
Boeing McDonnell Douglas DC-10/MD-10/MD-11 dimensions, s 4.2.2.11
Boeing McDonnell Douglas DC-10/MD-10/MD-11 spray area diagram, s 3.1.27
Boeing McDonnell Douglas DC-9 dimensions, s 4.2.2.10
Boeing McDonnell Douglas DC-9 spray area diagram, s 3.1.26
Boeing McDonnell Douglas MD-80/MD-90 dimensions, s 4.2.2.10
Boeing McDonnell Douglas MD-80/MD-90 spray area diagram, s 3.1.28
Bombardier 130-100 Continental dimensions, s 4.2.5.7
Bombardier Challenger CL600 dimensions, s 4.2.5.8
Bombardier CL 100/200 dimensions, s 4.2.5.6
Bombardier CRJ dimensions, s 4.2.5.4
Bombardier Global Express dimensions, s 4.2.3.7
Bombardier Global Express spray area diagram, s 3.1.33
Bombardier Shorts 330 spray area diagram, s 3.1.35
Canadair RJ100/200 spray area diagram, s 3.1.29
Canadair RJ700/900/1000 spray area diagram, s 3.1.30
category, aircraft, s 4.3
Cessna 560 Excel dimensions, s 4.2.5.16
Cessna 680 Citation Sovereign dimensions, s 3.2.5.18
Cessna 750 Citation X dimensions, s 4.2.5.17
Cessna Caravan C208 spray area diagram, s 3.1.36
Cessna Citation 525 CJ2 dimensions, s 4.2.5.13
Cessna Citation 550 Bravo dimensions, s 4.2.5.14
Cessna Citation 560 Encore dimensions, s 4.2.5.15
Cessna Citation CJ1 dimensions, s 4.2.5.12
configuration, aircraft deicing – elevator, s 4.1.7
Dassault Falcon 2000 dimensions, s 4.2.5.21
Dassault Falcon 50 dimensions, s 4.2.5.19
Dassault Falcon 900 dimensions, s 3.2.5.20
Dassault Falcon spray area diagram, 3.1.37
de Havilland DASH-8 100/200 dimensions, s 4.2.3.5
de Havilland DASH-8 100/200/300 spray area diagram, s 3.1.31
de Havilland DASH-8 400/Q400 dimensions, s 4.2.3.6
de Havilland DASH-8 400/Q400 spray area diagram, s 3.1.32
definition – area, wetted, s 4.2
dimension, aircraft, ss 4.2.1–4.2.31
Embraer E120 dimensions, s 4.2.3.9
Embraer E120 spray area diagram, s 3.1.38
Embraer E135/E140/E145 dimensions, s 4.2.3.10
Embraer E135/E140/E145 spray area diagram, 3.1.39
Embraer E170/E175 dimensions, s 4.2.3.11
Embraer E170/E175 spray area diagram, s 3.1.40
Embraer E190/E195 dimensions, s 4.2.3.11
Embraer E190/E195 spray area diagram, s 3.1.41
engine numbering, s 4.1.4
Fairchild Dornier 328 Propeller spray area diagram, s 3.1.42
Fairchild Dornier 328JET dimensions, s 4.2.3.12
Fairchild Dornier 328JET spray area diagram, s 3.1.43
Fairchild Dornier 728JET dimensions, s 4.2.3.13
Fairchild Metro/Merlin spray area diagram, s 3.1.44
fluid application – air conditioning off, s 4.1.3
fluid application – APU bleed air off, s 4.1.3
fluid application, anti-icing – amount required, s 4.4
Fokker F100 dimensions, s 4.2.3.17
Fokker F27 dimensions, s 4.2.3.14
Fokker F28 dimensions, s 4.2.3.15
Fokker F70 dimensions, s 4.2.3.16
Fokker F70/F100 spray area diagram, s 3.1.45
Gulfstream IV dimensions, s 4.2.5.22
Gulfstream spray area diagram, s 3.1.46
handedness, aircraft, s 4.1.4
Hawker 800 XP dimensions, s 4.2.5.23
Hawker Horizon dimensions, s 4.2.5.24
Hawker Siddeley HS 748 spray area diagram, s 3.1.13
height overall, aircraft, ss 4.2.1–4.2.31
IAI 1125Astra SPX dimensions, s 4.2.5.25
IAI Galaxy dimensions, s 4.2.5.26
Ilyushin II-96 dimensions, s 4.2.4.8
Ilyushin IL-114 dimensions, s 4.2.4.9
Ilyushin IL-62 dimensions, s 4.2.4.5
Ilyushin IL62 spray area diagram, s 3.1.47
Ilyushin IL-76 dimensions, s 4.2.4.6
Ilyushin IL76 spray area diagram, s 3.1.48
Ilyushin IL-86 dimensions, s 4.2.4.7
Ilyushin IL96 spray area diagram, s 3.1.49
Ilyushin IL-96M dimensions, s 4.2.4.8
Learjet 31A dimensions, s 4.2.5.11
Learjet 45 dimensions, s 4.2.5.9
Learjet 60 dimensions, s 4.2.5.10
Learjet spray area diagram, s 3.1.34
Let L410 dimensions, s 4.2.4.10
Let L610G dimensions, s 4.2.4.11
Lockheed C-130 spray area diagram, s 3.1.50
Lockheed Galaxy C5 dimensions, s 4.2.3.18
Lockheed Hercules C-130J dimensions, s 4.2.3.19
Lockheed L-1011 spray area diagram, s 3.1.51
McDonnell Douglas DC-10/MD-10/MD-11 spray area diagram, s 3.1.27
McDonnell Douglas DC-8 spray area diagram, s 3.1.25
McDonnell Douglas DC-9 spray area diagram, s 3.1.26
McDonnell Douglas MD-80/MD-90 spray area diagram, s 3.1.28
Mitsubishi MU-2 dimensions, s 4.2.5.27
no-spray area. See spray area, no-
Raytheon Premier 1 dimensions, s 4.2.5.28
SAAB 2000 dimensions, s 4.2.3.21
SAAB 340 dimensions, s 4.2.3.20
SAAB 340/2000 spray area diagram, s 3.1.52
Shorts 330 dimensions, s 4.2.5.29
Shorts 360 dimensions, s 4.2.5.30
AS6332 Aircraft Ground Deicing/Anti-icing Quality Management

Issued 2017-08-29 by SAE G-12 T.

This document sets the requirements for aircraft deicing/anti-icing quality management system. It comprises quality system, documentation, control of records, management responsibility, resource management, measurement and analysis of results, and process for continuous improvement.

Keywords:
AS9100, s 4
audit – documented procedure, s 9.1
audit evidence – definition, s 3.2b.
audit results, s 9.3
audit, s 6.4.2
audit, external, ss 6.4.2, 9.2
audit, internal, ss 6.4.2, 9.1
auditor – impartiality, s 9.2
auditor – objectivity, s 9.2
auditor – shall not audit their own work, s 9.2
auditor, s 9.2
check, deicing unit walk around, s 7.2.2
clean aircraft concept – definition, Rationale at p.1, s 3.2b
clean aircraft concept, Rationale at p.1, ss 4, 6.1, 6.2, 6.3.2, 6.5, 7.1.1, 7.1.2, 7.3.1, 8, 9, A.2, A.7
conformity – definition, s 3.2b.
contamination [frozen] – definition, s 3.2b.
contamination check – definition, s 3.2b.
contamination inspection – definition, s 3.2b.
continuous improvement. See improvement, continuous corrective action – definition, s 3.2b.
corrective action, s 6.4.2
critical component – definition, s 3.2b.
critical surface – definition, s 3.2b.
definition – audit evidence, s 3.2b.
definition – clean aircraft concept, s 3.2b.
definition – clean aircraft concept, Rationale at p 1
definition – conformity, s 3.2b.
definition – contamination [frozen], s 3.2b.
definition – contamination check, s 3.2b.
definition – contamination inspection, s 3.2b.
definition – corrective action, s 3.2b.
definition – critical component, s 3.2b.
definition – finding, s 3.2b.
definition – ground icing conditions, s 3.2b.
definition – improvement, opportunity for, s 3.2b.
definition – management, senior, s 3.2b.
definition – nonconformity, s 3.2b.
definition – observation, s 3.2b.
definition – preventive action, s 3.2b.
definition – qualified personnel, s 3.2b.
definition – quality assurance, s 3.2b.
definition – quality control, s 3.2b.
definition – quality improvement, s 3.2b.
definition – quality management system, s 3.2b.
definition – quality management, Rationale at p 1
definition – quality manual, s 3.2b.
definition – quality system accountable executive, s 3.2b.
definition – quality system accountable person, s 3.2b.
definition – quality system program manager, s 3.2b.
definition – quality system responsible person, s 3.2b.
definition – root cause, s 3.2b.
definition – service provider, s 3.2b.
definition – SMS, s 3.2b.
definition – training, head of, s 3.2b.
definition – winter operations, s 3.2b.
deicing unit – walk around check, s 7.2.2
finding – definition, s 3.2b.
ground icing conditions – definition, s 3.2b.
improvement, continuous, Rationale at p 1, ss 4, 5.1, 6.4.2, 7, 9, 9.3, 9.4, A.8
improvement, opportunity for – definition, s 3.2b.
ISO 9001, s 4
lockout procedure, s 7.2.2
management, senior – definition, s 3.2b.
master lock procedure. See tag-out procedure
nonconformity – definition, s 3.2b.
observation – definition, s 3.2b.
out-of-service procedure, s 7.2.2
preventive action – definition, s 3.2b.
preventive action, s 6.4.2
qualified personnel – definition, s 3.2b.
quality – management responsibilities – continuous improvement, s 6.4.3
quality – management responsibilities – documentation requirements, s 6.5
quality – management responsibilities – management commitments, s 6.1
quality – management responsibilities – management representative, s 6.3.2
quality – management responsibilities – management review, s 6.4
quality – management responsibilities – planning objectives, s 6.2
quality – management responsibilities – responsibility and authority, s 6.3.1
quality – management responsibilities – review input, s 6.4.2
quality – management responsibilities – review output, s 6.4.3
quality – management responsibilities – training, head of, s 6.3.3
quality – management responsibilities – audits, s 6.4.2
quality – management responsibilities, s 6
quality – service provider responsibilities – aircraft requirement after deicing, s 8.3
quality – service provider responsibilities – approved locations for deicing, s 7.2.2
quality – service provider responsibilities – awareness, s 7.1.2
quality – service provider responsibilities – calibration, ss 7.2.1, 7.2.2, 7.3.2, A.5, A.6,
quality – service provider responsibilities – clean aircraft concept, ss 7.1.1, 7.1.2
quality – service provider responsibilities – communication systems, ss 7.2.1, 8.3
quality – service provider responsibilities – communications with flightcrews, s 8.3
quality – service provider responsibilities – competence of personnel, ss 7.1.1, 7.1.2
quality – service provider responsibilities – contamination check, s 8.3
quality – service provider responsibilities – continuous improvement, s 7
quality – service provider responsibilities – deicing facilities documentation, s 7.2.2
quality – service provider responsibilities – deicing infrastructure, s 7.2.1
quality – service provider responsibilities – deicing procedures, s 8.3
quality – service provider responsibilities – deicing unit boom inspections, 7.2.2
quality – service provider responsibilities – education records, s 7.1.1
quality – service provider responsibilities – engines-on training, s 7.1.2
quality – service provider responsibilities – equipment walks around checks
quality – service provider responsibilities – experience records, s 7.1.1
quality – service provider responsibilities – fall protection systems, s 7.2.2
quality – service provider responsibilities – fire extinguishers, s 7.2.2
quality – service provider responsibilities – fire suppression systems, s 7.2.2
quality – service provider responsibilities – fluid acceptance checks
quality – service provider responsibilities – fluid certificates of conformance with delivery, s 7.3.2
quality – service provider responsibilities – fluid field testing, s 7.3.2
quality – service provider responsibilities – fluid handling systems, s 7.2.1
quality – service provider responsibilities – fluid labeling, ss 7.2.2, 7.3.1
quality – service provider responsibilities – fluid manufacturer recommendations, abide by, s 7.3.1, 7.3.2
quality – service provider responsibilities – fluid quality control checks, ss 7.3, 7.3.1, 7.3.2, 8.3
quality – service provider responsibilities – fluid sampling procedures, s 7.3.2
quality – service provider responsibilities – fluid storage, s 7.3.1
quality – service provider responsibilities – fluid testing equipment, s 8.2
quality – service provider responsibilities – fluid testing, laboratory, s 7.3.2
quality – service provider responsibilities – fluids, ss 8.2, 8.3
quality – service provider responsibilities – hazard labeling, s 7.2.2
quality – service provider responsibilities – information systems, s 7.2.1
quality – service provider responsibilities – inspection records, s 7.2.2
quality – service provider responsibilities – lockout procedures, s 7.2.2
quality – service provider responsibilities – maintenance records, s 7.2.2
quality – service provider responsibilities – out-of-service procedures, s 7.2.2
quality – service provider responsibilities – personal protective equipment, s 7.2.2
quality – service provider responsibilities – planning deicing operations, s 8.1
quality – service provider responsibilities – post deicing anti-icing check, s 8.3
quality – service provider responsibilities – qualification records, s 7.1.2
quality – service provider responsibilities – qualified personnel, s 8.2
quality – service provider responsibilities – tag-out procedures, s 7.2.2

131
quality – service provider responsibilities – trainer certification, s 7.1.2
quality – service provider responsibilities – training effectiveness, s 7.1.1
quality – service provider responsibilities – training examinations, s 7.1.2
quality – service provider responsibilities – training programs, s 7.1.2
quality – service provider responsibilities – training qualification requirements, s 7.1.2
quality – service provider responsibilities – training records, ss 7.1.1, 7.1.2
quality – service provider responsibilities – training, initial, s 7.1.1
quality – service provider responsibilities – training, recurrent, s 7.1.1
quality – service provider responsibilities – transport systems, s 7.2.1
quality – service provider responsibilities – work instructions, ss 8.2, 8.3
quality assurance – definition, s 3.2b.
quality control – definition, s 3.2b.
quality improvement – definition, s 3.2b.
quality management – definition, Rationale at p 1, s 3.2b.
quality management – system approach, Rationale at p 1, ss 4, 5
quality management system – aircraft size limits, s 5.5
quality management system – communications, s 5.5
quality management system – conformance to AS6285, s 5.5
quality management system – conformance to AS6286, s 5.5
quality management system – conformance to regulations, s 5.5
quality management system – control of documents, s 5.4
quality management system – definition, s 3.2b.
quality management system – deicing location procedures, s 5.5
quality management system – document control, s 5.3
quality management system – documentation requirements, s 5.5
quality management system – emergency procedures, s 5.5
quality management system – engines-on procedures, s 5.5
quality management system – ground icing program, s 5.5
quality management system – procedures, s 5.2
quality management system – process control documents, s 5.2
quality management system – quality manual, ss 5.2, 5.5
quality management system – quality objectives, ss 5.2, 9.3
quality management system – quality policy, ss 5.2, 9.3
quality management system – records, s 5.2
quality management system – safety zones, s 5.5
quality management system – SMS, s 5.5
quality management system – winter operation documents, s 5.2
quality management system – winter planning documents, s 5.2
quality management system, ss 4, 5, A.1
quality management, s 4
quality manual – definition, s 3.2b.
quality manual – ground icing program, comprised in, s 3.2b.
quality objectives, ss 5.2, 9.3
quality policy, ss 5.2, 9.3
quality system accountable executive – definition, s 3.2b.
quality system accountable person – definition, s 3.2b.
quality system program manager – definition, s 3.2b.
quality system responsible person – definition, s 3.2b.
root cause – definition, s 3.2b.
root cause, s 9.4, A.8
safety management system. See SMS
service provider – definition, s 3.2b.
SMS – definition, s 3.2b.

132
tag-out procedure, s 7.2.2
training – clean aircraft concept, ss 7.1.1, 7.1.2
training – engines-on deicing, s 7.1.2
training – initial, s 7.1.1
training – records, ss 7.1.1, 7.1.2
training – recurrent, s 7.1.1
training, head of deicing – definition, s 3.2b.
training, head of deicing, s 6.3.3
winter operations – definition, s 3.2b.
Documents Issued by Regulators

The FAA and Transport Canada publish yearly holdover time guidelines, extensive guidance material, a list of fluids that have qualified themselves for anti-icing performance and aerodynamic acceptance and their respective lowest aerodynamic acceptance temperature. The FAA and Transport Canada do not verify that the fluids meet all the technical requirements of AMS1424 (latest version) and AMS1428 (latest version) other than anti-icing performance and aerodynamic acceptance. Users must verify if the fluids to be used meet all other technical requirements of AMS1424 (latest version), AMS1424/1, AMS1428 (latest version) and AMS1428/1.

EASA and ICAO also publish guidance material.

Documents Issued by the Federal Aviation Administration

FAA Notice N 8900.431 Revised FAA–Approved Deicing Program Updates, Winter 2017–2018

Effective date: 2017-08-11; cancellation date: 2018-08-11. Issued by the FAA.

This notice is meant to provide FAA inspectors information on holdover time and guidance on various several operational issues related to aircraft ground deicing. It is revised every year is to be used in conjunction with the FAA *Holdover Time Guidelines*, also issued annually.

It provides information and guidance, not only to the FAA inspectors, but to airlines seeking FAA approval of ground deicing/anti-icing programs.

Keywords:
active frost. *See* frost, active
aerodynamic effect of fluids – fluid freezing in flight, residual, s 13.l.
aerodynamic effect of fluids – fluid presence at time of rotation, s 13.c.(1)
aerodynamic effect of fluids – on aircraft with non-powered flight controls – failure to rotate, s 13.c.(1)
aerodynamic effect of fluids – on elevator control force, s 13.c.(2)
aerodynamic effect of fluids – on elevator effectiveness, s 13.c.(2)
aerodynamic effect of fluids – on small corporate jet, small – failure to rotate, s 13.c.(1)
aerodynamic effect of fluids – on stick/column forces, s 13.c.(2)
aerodynamic effect of fluids – on tab effectiveness, s 13.c.(2)
aerodynamic effect of fluids – on tail surfaces, s 13.c.(2)
aerodynamic effect of fluids – on turbo-prop aircraft, slow rotation speed – failure to rotate, s 13.c.(1)
aircraft, turbo-prop high wing – inspection, s 13.g.
airplane. See aircraft.
alkali organic salt based Type I – FAA guidance, s 13.e.
alkali organic salts – effect on anti-icing fluids, s 13.e.
allowance time – precipitation stops, when, ss 8.e.(2)(b), 8.e.(2)(c)8.
allowance time – pretakeoff contamination check not required, s 8.e.(2)(a)
allowance time – pretakeoff contamination check useless, s 8.e.(2)(a)
allowance time – pretakeoff contamination inspection not required, s 8.e.(2)(a)
allowance time – pretakeoff contamination inspection useless, s 8.e.(2)(a)
allowance time – temperature decreasing, s 8.e.(2)(c)8.
allowance time – temperature increasing, s 8.e.(2)(b)
allowance time – temperatures stable, s 8.e.(2)(b)
allowance time extension – with pretakeoff contamination check – none, s 8.e.(2)(c)6
allowance time extension – with pretakeoff contamination inspection – none, s 8.e.(2)(c)6
allowance time for METAR code GS. See METAR code GS; METAR code GS, interpretation of
allowance time for METAR code SHGS in Canada, s 8.f.(2)(b)
allowance time guidance (FAA), s 8.e.(1–2)
allowance time precipitation type – light ice pellets, s 8.e.(2)(b)
allowance time precipitation type – moderate ice pellets, s 8.e.(2)(b)
allowance time precipitation type – small hail, ss 8.e.(1)(b), 8.e.(2)(c)9.
allowance time v HOT, ss 8.e.(1)(a–c)
allowance time, ss 6.e, 8.a first note, 8.e to 8.g., 9, 11, 13.b.(2)
allowance time, 76% adjusted – guidance (FAA), 13.b.(2)
allowance time, 76% adjusted – flaps and slats deployed, 13.b.(2)
allowance time, purpose of, s 8.e.(1)(c)
allowance time, start of, s 8.e.(2)(b)1–3.
allowance time, Type I – none, s 8.e.(2)(c)2.
allowance time, Type II – none, s 8.e.(2)(c)2.
allowance time, Type III neat, s 8.e.(2)(c)2.
allowance time, Type III undiluted, s 8.e.(2)(c)2.
allowance time, Type III unheated, s 8.e.(2)(c)3.
allowance time, Type IV neat, s 8.e.(2)(c)2.
allowance time, Type IV undiluted, s 8.e.(2)(c)2.
ARP 5485 – use by FAA to develop HOT, s 8.e.(1)(a)
ARP 5945 – use by FAA to develop HOT s 8.e.(1)(a)
ATOS, ss 16, 17
Boeing B737 wingtip devices, s 13.j.(3)
Boeing B737-600/-700/-800/-900 – cold soaked fuel frost – exemption process (FAA), s 13.k.
Boeing B747 wingtip devices, s 13.j.(3)
Boeing B757 wingtip devices, s 13.j.(3)
Boeing B767 wingtip devices, s 13.j.(3)
Boeing MD11 wingtip devices, s 13.j.(3)
check time determination system, s 12.b.
check time, s 12.b.
check, pretakeoff contamination (FAA). See pretakeoff contamination check (FAA)
check, tactile – detection of clear ice in engine inlets, s 14.d.(3)
check, tactile – hard wing aircraft with aft-mounted jet engine, s 13.h.
check, tactile – to distinguish individual ice pellets in fluid from slush, s 9.d.
check, tactile – to distinguish individual ice pellets in fluid from adhering ice pellets, s 9.d.
check, tactile approved (FAA)– in heavy snow, s 8.d.(1–2)
check, visual approved (FAA) – in heavy snow, s 8.d.(1–2)
clear ice, detection of – in engine inlets by ROGIDS, s 14.d.(3)
clear ice, detection of – in engine inlets, s 14.d.(3)
cold soaked fuel frost. See frost, cold soaked fuel
communication with flightcrew – absence of flightcrew at time of deicing, s 13.a.
CSFF. See frost, cold soaked fuel
CTSD, s 12.b.
definition – dewpoint, s 8.b.(4)
definition – freezing point buffer, s 7.a.(3)
definition – frost point, s 8.b.(4)
definition – frost, active, s 8.b.(3)
definition – hard wing, s 13.h.
definition – hoarfrost, s 8.b.
definition – LOUT, s 7.d.(1)
definition – Type I, s 7.a.
definition – Type II/III/IV, s 7.b.
deicing fluid v anti-icing fluid, s 7.c.(3)
deicing program – FAA approved, Title at p 1, ss 2, 5
deicing/anti-icing – absence of flightcrew at the time of, s 13.a.
deicing/anti-icing – flightcrew awareness, s 13.a
dewpoint – definition, s 8.b.(4)
dewpoint, ss 8.b.(2), 8.b.(4)
dry ice crystals – temperature generally below -10°C to -15°C, s 14.c.(1)(g)
dry ice crystals, adhesion of. See dry snow, adhesion of
dry snow, adhesion of – effect of aircraft parking location, s 14.c.(1)(h)
dry snow, adhesion of – effect of fuel tanks (heat releasing), s 14.c.(1)(h)
dry snow, adhesion of – effect of hydraulic fluid heat exchangers, s 14.c.(1)(h)
dry snow, adhesion of – effect of OAT, s 14.c.(1)(h)
dry snow, adhesion of – effect of refueling, ss 8.g.(2), 14.c.(1)(h)
dry snow, adhesion of – effect of weather, s 14.c.(1)(h)
dry snow, adhesion of – effect of wing in the sun, s 14.c.(1)(h)
dry snow, adhesion of – effect of wing temperature, s 14.c.(1)(h)
dry snow, adhesion of – regulations (US), s 8.g.(2)
dry snow, ss 8.g.(2), 14.c.(1)(g)
dry-out, Type II/IV. See Type II/III/IV residue; Type II/IV residue
eHOT, s 12.c
FAA Engine and Propeller Directorate – engine run-ups in heavy snow s 8.a. second note
FAA Notice N 8900.431, Title at p 1
flightcrew absence during deicing/anti-icing, s 13.a.
flightcrew awareness – deicing/anti-icing, s 13.a.
fluid application – in a hangar of T-tail aircraft, ss 13.m.(3–4)
fluid application – in a hangar, s 13.m.
fluid application issues – diluted fluid remaining on aircraft surface, s 14.c.(1)(c)
fluid application issues – incomplete removal of contamination, s 14.c.(1)(a)
fluid application issues – insufficient amount of Type II/IV, ss 13.d.(1), 13.e., 14.c.(1)(f)
fluid application issues – insufficient freezing point buffer, s 14.c.(1)(a)
fluid application issues – loss of fluid heat during application, s 14.c.(1)(c)
fluid application issues – relying on fluid flow-back over contaminated areas, s 14.c.(1)(d)
fluid application issues – reverse order – e.g. wing tip to wing root, s 14.c.(1)(a)
fluid application issues – uneven application of Type II/III/IV, s 14.c.(1)(f)
fluid application, anti-icing – insufficient amount, ss 13.d.(1), 14.c.(1)(f)
fluid application, deicing – minimum quantity, s 7.c.(2)
fluid application, deicing – temperature application minimum, s 7.c.(2)
fluid application, deicing – temperature at nozzle, minimum 60°C, ss 7.a.(2)(b), 7.a.(3) note, 7.b.(7)(b), 7.c.(2), 14.c.(1)(e) note

fluid application, two-step – Type I compatibility with Type II/III/IV, s 13.d.(1)
fluid compatibility – Type I with Type II/III/IV, s 13.d.(1–2), see footnote 34
fluid dry-out. See Type II/III/IV residue; Type II/IV residue
fluid failure description – ice pellets in fluid adhering to aircraft surface, s 9.d.
fluid failure description – ice pellets in fluid forming a slushy consistency, s 9.d.
fluid failure description – ice pellets in fluid forming a slushy consistency v visible individual ice pellets in fluid, s 9.d.
fluid failure description – no absorption of precipitation, s 8.e.(1)(a)
fluid failure recognition training for persons conducting pre-takeoff contamination checks (FAA), s 9.e.(4)(b)
fluid failure recognition training for pilots (FAA), s 9.e.(4)(b)
fluid freezing, first areas of – leading edge, s 14.c.(3)
fluid freezing in flight – residual fluid on trailing edge, s 13.l
fluid, residual – on trailing edge, s 13.l
fog. See snowfall intensity overestimation due to obscuration
forced air – concerns – inadequate application of Type II/III/IV, s 12.a.(2)(b)
forced air – concerns – other, s 12.a.(3)
forced air – concerns – unduly aerated Type II/IV – foamy appearance, s 12.a.(2)(a)
forced air – concerns – unduly aerated Type II/IV – frothy appearance, s 12.a.(2)(a)
forced air – concerns – unduly aerated Type II/IV – milky white appearances, s 12.a.(2)(a)
forced air – guidance (FAA), s 12
forced air – mandatory field test (FAA), s 12.a.(2)(c)
forced air – modes – alone, s 12.a.(1)
forced air – modes – Type II/II/IV applied over the air stream, s 12.a.(1)
forced air – modes – with Type I, s 12.a.(1)
forced air – precautions, ss 12.a.(2), 12.a.(3)
fog. See also HOT precipitation rate
freezing point buffer – definition, s 7.a.(3)
freezing point buffer – Type I – 10°C, ss, 7.a.(3), 7.d.(1)(a)
freezing point buffer – Type II/III/IV – 7°C, s 7.d.(1)(a)
freezing point buffer, reasons for – difference between OAT and aircraft surface temperature, s 7.a.(3)
freezing point buffer, reasons for – differences in aircraft surface materials, s 7.a.(3)
freezing point buffer, reasons for – inaccuracies in fluid/water mixture volumes, s 7.a.(3)
freezing point buffer, reasons for – OAT changes after fluid application, s 7.a.(3)
freezing point buffer, reasons for – refractometer measurement variability80, s 7.a.(3)
freezing point buffer, reasons for – solar radiation, s 7.a.(3)
freezing point buffer, reasons for – variability in temperature of applied fluid, s 7.a.(3)
freezing point buffer, reasons for – wind effects, s 7.a.(3)
frost. See also HOT precipitation rate
frost – deceptively dangerous – drag increase, s 8.b.(1)
frost – deceptively dangerous – lift degradation, s 8.b.(1)
frost appearance – white deposit of fine crystalline structure, s 8.b
frost formation conditions – cloudless nights, low wind (radiation cooling), s 8.b.
frost formation conditions – cold-soaked fuel (conductive cooling), s 8.b.
frost formation conditions – surface below OAT and at or below frost point, s 8.b.(2)
frost formation mechanism – conductive cooling, s 8.b.
frost formation mechanism – radiation cooling, s 8.b.
frost on lower wing surface, s 8.b.
frost on upper wing surface, s 8.b.

80 Refractometer measurement error can be introduced, for instance, by the imperfect temperature compensation of analog temperature-compensated refractometers.
frost point – definition, s 8.b.(4)
frost point – higher than dewpoint at given humidity level, s 8.b.(4)
frost point and dewpoint table, s 8.b.(4)
frost point v dewpoint, s 8.b.(4)
frost roughness, s 8.b.(1)
frost, active – definition, s 8.b.(3)
frost, cold soaked fuel – exemption process (FAA), s 13.k
frost, cold soaked fuel – exemption, s 13.k.
frost, cold soaked fuel, s 13.k.
frost. See also frost, active; HOT, frost; HOT precipitation rate
fueling, effect of – adhesion of dry snow, ss 8.g.(2), 14.c.(1)(h)
hail intensity, small v ice pellet intensity, s 8.f.(2)(d)
hail, small – intensity, ss 8.f.(1)(c), 8.f.(2)(d)
hail, small – operations in, s 8.f
hangar, fluid application in – start of HOT s 13.m.(2)
hangar, fluid application in – T-tail aircraft, ss 13.m.(3–4)
hangar, fluid application in, s 13.m.
hangar, use of, s 13.m.
hard wing – definition, s 13.h.
hard wing – tactile check and visual check after post deicing/anti-icing check, s 13.h.
hard wing – tactile check and visual check with pretakeoff contamination check when HOT exceeded, s 13.h.
hard wing – tactile check when temperature at or below 10°C and high humidity, s 13.h.
hard wing – tactile check with cold soaked wings, s 13.h.
haze. See snowfall intensity overestimation due to obscuration
hoarfrost – definition, s 8.b.
hoarfrost, s 8.b.
hoarfrost. See also frost
HOT (FAA), development of – use of SAE ARP5485 and SAE ARP5945, s 8.c.(1)(a)
HOT for METAR code GS. See METAR GS, interpretation of
HOT from electronic hand-held devices. See eHOT
HOT guidance (FAA), entire N 8900.431 document
HOT guidelines notes and cautions – mandatory use of, 7.e.
HOT precipitation categories – freezing drizzle, s 7.b.(1)
HOT precipitation categories – freezing fog, ss 7.b.(1), 8.c.
HOT precipitation categories – frost, ss 7.b.(1), 8.b.
HOT precipitation categories – light freezing rain, s 7.b.(1)
HOT precipitation categories – rain on cold soaked wing, s 7.b.(1)
HOT precipitation categories – snow, ss 7.b.(1), 8.a.(2)
HOT precipitation rate – freezing fog – ca 0.2–0.5 mm/h, 2–5 g/dm2/h, s 8.c.
HOT precipitation rate – freezing rain, light – less or equal to 2.5 mm/h, s 8.a.
HOT precipitation rate – frost – low but not quantified, s 8.a.(3)
HOT precipitation rate – snow, light – 0.4–1.0 mm/h, 4–10 g/dm2/h, ss 8.a., 8.a.(2)(b)
HOT precipitation rate – snow, moderate – 1.0–2.5 mm/h [10–25 g/dm2/h], s 8.a.
HOT precipitation rate – snow, very light – 0.3–0.4 mm/h, 3–4 g/dm2/h, ss 8.a, 8.a.(2)(b)
HOT reduction – flaps and slats deployed. See HOT, 76% adjusted – flaps and slats deployed
HOT temperature limits, s 7.b.(4)
HOT v allowance time, ss 8.e.(1)(a–c)
HOT variables – active meteorological condition, s 7.b.(1)
HOT variables – fluid concentration, s 7.b.(1)
HOT variables – OAT, s 7.b.(1)
HOT variables – precipitation intensity, s 7.b.(1)
HOT variables – precipitation type, s 7.b.(1)
HOT, 76% adjusted – flaps and slats deployed, ss 7.b.(8) second note, 13.b.(2)
HOT, effect of wind on freezing fog rate of deposition, s 8.c.
HOT, frost – guidance, ss 8.a.(3), 8.b.
HOT, no – freezing rain, heavy, ss 8.a., 8.g.
HOT, no – freezing rain, moderate, ss 8.a., 8.g.
HOT, no – freezing rain, s 8.f.
HOT, no – hail, small, s 8.a. but see allowance time
HOT, no – hail, ss 8.a., 8.g.
HOT, no – ice pellets mixed with other precipitation, s 8.a. but see allowance time
HOT, no – ice pellets, light, s 8.a. but see allowance time
HOT, no – ice pellets, moderate, s 8.a. but see allowance time
HOT, no – METAR code GR, s 8.f.(1)(d)
HOT, no – snow, heavy – takeoff under special dispatch procedures (FAA), s 8.d.
HOT, no – Type I unheated, s 7.a.(1)(b) note
HOT, no v no takeoff81, s 8.a. first note
HOT, purpose of, s 8.e.(1)(c)
HOT, start of – for fluid application in a hangar, s 13.m.(2)
HOT, Type I – aluminum v composite surface – how to select, s 7.a.(1)
HOT, Type I – guidance (FAA), s 7.a.
HOT, Type I – metal surface, s 7.a.(1) note
HOT, Type I – titanium surface, s 7.a.(1) note
HOT, Type II generic – fluid-specific LOUT, mandatory use of, s 7.b.(8) first note
HOT, Type II generic – HOT minimum (worst case) values of all Type II, s 7.b.(8)82
HOT, Type II/II/IV non-standard dilutions, 7.b.(6)
HOT, Type II/III/IV – guidance, general, s 7.b.
HOT, Type II/IV – heated v unheated fluid, s 7.b.(7)
HOT, Type III generic – not issued83
HOT, Type IV generic – fluid-specific LOUT, mandatory use of, s 7.b.(8) first note
HOT, Type IV generic – HOT minimum (worst case) values of all Type IV fluids, s 7.b.(8)
HOTDS, s 12.b
ice crystals. See also dry ice crystals
ice pellet intensity v small hail intensity, s 8.f.(2)(d)
ice pellets – visual fluid failure of HOT not applicable, s 8.e.(1)(a)
metal pellets on cold dry aircraft, s 8.g.(2)
metal pellets on cold dry aircraft. See also dry snow
leading edge – aerodynamically critical, s 13.l
list of fluids (FAA) – use of, s 7.d.(3)

81 It may be useful for users under FAA jurisdiction to consider that FAA appears to make distinction between 4 kinds of conditions conducive to icing: 1) \textit{conditions with holdover time}, e.g., freezing fog, ice crystals, very light snow, very light snow grains, very light snow pellets, light snow, light snow grains, light snow pellets, moderate snow, moderate snow grains, moderate snow pellets, freezing drizzle, light freezing rain, rain on cold soaked wing, very light snow mixed with light rain, light snow mixed with light rain, active frost, 2) \textit{conditions without holdover time but with an allowance time}, e.g., light ice pellets, light ice pellets mixed with light snow, light ice pellets mixed with moderate snow, light ice pellets mixed with light or moderate freezing drizzle, light ice pellets mixed with light freezing rain, light ice pellets mixed with light rain, light ice pellets mixed with moderate rain, moderate ice pellets or small hail, moderate ice pellets or small hail mixed with moderate freezing drizzle, moderate ice pellets or small hail mixed with moderate rain, and 3) \textit{conditions without holdover time but where, with special dispatch procedures, takeoff can occur}, e.g., heavy snow and 4) \textit{conditions without holdover time}, e.g. moderate freezing rain, heavy freezing rain, hail, heavy ice pellets.

82 The generic HOT table for Type II is derived from the worst case of all Type II only and not of Type II and Type IV. Section 7.b.(8) is not clear on this point. The FAA HOT Guidelines Regression Information Winter 2017-2018 makes it clear at p 7.

83 There is no Type III generic HOT table. There was a mention to that effect in N 8900.326, but the note does not appear in N 8900.431.
Aircraft Deicing Documents – Issued by the FAA

LOUT – calculation examples, s 7.d.(2)
LOUT – definition, s 7.d.(1)
LOUT – freezing point buffer, s 7.d.(1)(a)
LOUT for high speed aircraft, s 7.d.(1)(b)
LOUT for low speed aircraft, s 7.d.(1)(b)
LOUT, list of, s 7.d.(3)
LOUT, maximum concentration for Type I, s 7.d.(3)(a)
LOUT, multiple – for Type II/III/IV, s 7.d.(3)(b)
LWE system, s 12.b
METAR code GR – is not small hail, s 8.f.(1)(d)
METAR code GR – means hail, s 8.f.(1)(d)
METAR code GR – no allowance time, s 8.f.(1)(d)
METAR code GR – no HOT, s 8.f.(1)(d)
METAR code GS – guidance (FAA), s 8.f
METAR code GS (WMO) – means small hail or snow pellets, s 8.f.(1)(a)
METAR code GS in Canada – means snow pellets, s 8.f.(1)(a), 8.f.(b)
METAR code GS in Canada – use of snow HOT, s 8.f.(2)(b)
METAR code GS in US – if small hail, use ice pellet and small hail allowance times, s 8.f.(2)(b)
METAR code GS in US – if snow pellets, use snow HOT, s 8.f.(2)(b)
METAR code GS in US – if unknown, use of ice pellet and small hail allowance times, s 8.f.(2)(b)
METAR code GS in US – means small hail or snow pellets, s 8.f.(1)(a)
METAR code GS, interpretation of, s 8.f
METAR code SHGS in Canada – means small hail, s 8.f.(1)(a), 8.f.(2)
METAR code SHGS in Canada – use of ice pellet and small hail allowance times, s 8.f.(2)(b)
no HOT. See HOT, no
non-glycol based Type I – FAA guidance, s 13.e.
Notice N 8900.374 – cancellation, s 4.
Notice N 8900.431, Title at p 1
obscurcation, snowfall intensity overestimation due to. See snowfall intensity overestimation due to obscuration
pilot assessment of precipitation intensity – company (airline) coordination (FAA), s 9.c
pilot assessment of precipitation intensity – company (airline) reporting after the fact (FAA), s 9.c
pilot assessment of precipitation intensity – flightcrew absence during deicing/anti-icing, s 13.a
pilot assessment of precipitation intensity – mandatory pretakeoff contamination check (FAA), s 9.d.
pilot assessment of precipitation intensity – pilot intensity assessment greater than reported (FAA), s 9.a.
pilot assessment of precipitation intensity – pilot intensity assessment less than reported (FAA), s 9.e.
pilot assessment of precipitation intensity – pilot intensity assessment grossly different than reported (FAA), s 9.a.
pilot assessment of precipitation intensity – snowfall visibility table, s 9.e.
pilot assessment of precipitation intensity – training requirement (FAA), s 9.e.(4)
POI – aircraft, turbo-prop high wing – inspection, s 13.g.
POI – approval of deicing program (FAA), s 2
POI – ATOS and SAS reporting, ss 16., 17.
POI – distribution of HOT, s 14.a.
POI – operations during light freezing rain/freezing drizzle, s 14.d
POI – program tracking and reporting, s 15.
post deicing/anti-icing check, ss 13.h.(2), 14.c.(2) (b–c)
precipitation intensity assessment by pilot. See pilot assessment of precipitation intensity
pretakeoff check – factor in selection of categories of snow precipitation, s 8.a.(2)(b)
pretakeoff check – single engine high wing turboprop, s 13.g.
pretakeoff check – wing tip devices, ss 13.j.(1–3)
pretakeoff contamination check (FAA) – 5 minutes rule, ss 9.d., 13.h.(3)
pretakeoff contamination check (FAA) – fluid failure recognition training for pilots, s 9.e.(4)(b)
pretakeoff contamination check (FAA) – fluid failure recognition training for persons conducting the pretakeoff contamination check, s 9.e.(4)(b)
pretakeoff contamination check (FAA) – for allowance time, not, s 8.e.(1)(c)
pretakeoff contamination check (FAA) – for HOT, s 8.e.(1)(c)
pretakeoff contamination check (FAA) – hard wing aircraft with aft mounted engines, s 13.h
pretakeoff contamination check (FAA) – operations in heavy snow\(^4\), s 8.d.(1)
pretakeoff contamination check (FAA) – when HOT exceeded, s 9.d.
pretakeoff contamination check (FAA) – wingtip devices, of, s 13.j.(3)
pretakeoff contamination check (FAA), external – light freezing rain and freezing drizzle, s 14.d.(2)
pretakeoff contamination check (FAA). See also pilot assessment of precipitation intensity pretakeoff contamination inspection (FAA)\(^5\)
refueling, effect of. See also fueling, effect of
regulations, US – guidance (FAA), s 8.f.(2)
representative surface – fluid failure, indication of first, s 14.c.(3)
representative surface – inclusion of wing leading edge, s 14.c.(3)
representative surface – visibility from within the aircraft, s 14.c.(3)
representative surface for wingtip devices, ss 13.j.(1), 13.j.(2), 14.c.(4)
residual fluid – on trailing edge in flight, s 13.l
scimitar, split. See wingtip devices
scimitar. See wingtip devices
sharklets. See wingtip devices
slats. See flaps and slats
smoke. See snowfall intensity overestimation due to obscuration
snow occurrence, s 8.a.(2)(a)
snow pellets on cold dry aircraft, s 8.g.(2)
snow pellets on cold dry aircraft. See also dry snow
snow, cold dry. See dry snow
snow, dry. See dry snow
snow, heavy – engine power run-ups, s 8.a. second note
snow, heavy – precipitation rate greater than 2.5 mm/h [25 g/dm\(^2\)], s 8.a.
snow, heavy – takeoff in (FAA), s 8.d.(2)
snow, light. See also HOT precipitation rate
snow, moderate. See also HOT precipitation rate
snow, very light. See also HOT precipitation rate
snow. See also HOT precipitation categories; HOT precipitation rate
snowfall intensity overestimation due to obscuration – fog, s 9.e.(3)
snowfall intensity overestimation due to obscuration – haze, s 9.e.(3)
snowfall intensity overestimation due to obscuration – smoke, s 9.e.(3)
snowfall intensity. See also HOT precipitation rate
snowfall visibility table – guidance (FAA), s 9.e.(3)
snowfall visibility table – use of prevailing visibility, s 9.e.(3)
strakes. See wingtip devices
tactile inspection. See check, tactile
takeoff, no – freezing rain, heavy – guidance (FAA), s 8.a first note, 8.f.(1)
takeoff, no – freezing rain, moderate – guidance (FAA), s 8.a first note, 8.f.(1).
takeoff, no – hail – guidance (FAA), ss 8.a first note, 8.f.(1)

\(^4\) Strictly speaking the approved visual and/or tactile check to allow takeoff in heavy snow is not a pretakeoff contamination check, but it is very similar in nature.

\(^5\) Section 8.e.(1)(c) refers to “pretakeoff contamination inspection (check)”. In the section related to allowance time (section 8.e), it is as if pretakeoff contamination inspection is a synonym for pretakeoff contamination check.
takeoff, no – ice pellets, heavy – guidance (FAA), s 8.f.(1)
trailing edge, residual frozen fluid on, s 13.1
training – fluid failure recognition for persons conducting pretakeoff contamination checks (FAA), s 9.e.(4)(b)
training – fluid failure recognition training for pilots (FAA), s 9.e.(4)(b)
training – pilot assessment of precipitation intensity (FAA) s 9.e.(4)(a)
Type I – application rate, minimum (1 l/m²), s 7.c.(2)
Type I – compatibility with Type II/III/IV, s 13.d.(1–2), see footnote 34
Type I – definition, s 7.a.
Type I – heat contribution to HOT, ss 7.a.(1)(a), 7.c.(2)
Type I – heating requirements, s 7.a.(2)(a–b)
Type I – temperature at nozzle (60°C) compliance, s 7.a.(2)(b)
Type I – temperature, minimum application (60°C), ss 7.a.(2)(a–b), 7.c.(2), 14.c(1)(e)
Type I degradation – chemical contamination, s 10.c.
Type I degradation – heating – glycol oxidation
Type I degradation – heating – water loss/increase in glycol concentration, s 10.b.
Type I Non-glycol based fluid – effect on Type II/III/IV – FAA Guidance, s 13.e.
Type I, failure of – leading edge, s 7.a.(1)(b)
Type I, failure of – structurally thin areas, s 7.a.(1)(b)
Type I, failure of – trailing edge, s 7.a.(1)(b)
Type I, failure of – wing tips, s 7.a.(1)(b)
Type I, unheated – HOT not approved, s 7.a.(1)(b) note
Type II/III/IV – no protection for airborne aircraft s14.d.(1)
Type II/III/IV – quality control – appearance: contamination, separation
Type II/III/IV – quality control – pH, s 10
Type II/III/IV – quality control – refractive index, s 10
Type II/III/IV – compatibility with Type I, s 13.d.(1–2), see footnote 34
Type II/III/IV – concentration, s 7.b.(2)
Type II/III/IV – definition, s 7.b.
Type II/III/IV – fluid concentration
Type II/III/IV – forced air application – conditions to use HOT – appropriate thickness, s 12.a
Type II/III/IV – forced air application – conditions to use HOT – even coverage, s 12.a.(2)(b)
Type II/III/IV – forced air application – conditions to use HOT – field tested equipment, s 12.a.(2)(c)

86 Heating Type I is necessary but will result in some water loss and corresponding increase in glycol concentration. One must take care not to exceed the highest glycol concentration that was tested and passed aerodynamic acceptance. If Type I is repeatedly or continuously heated without replenishment of fresh material or heated at extreme temperatures, there can be oxidation of the glycol, usually the color will fade and pH will decrease below the its accepted specification range.

87 Color should be looked at when checking for appearance. Suspended matter is a form of contamination. It is virtually impossible to exclude all suspended matter. Small amounts of iron particles (not rust) are generally thought to be acceptable. The criterion of acceptability is sometimes formulated as “substantially free from suspended matter”.

88 Neat fluid. The user of a Type II, III or IV HOT guideline needs to know the concentration of the fluid. Guidance material found in section 7.b.(2) of FAA Notice N 8900.431 reads as follows: “For Types II, III, and IV fluids, the fluid concentration (percent mixture) is the amount of undiluted (neat) fluid in water. Therefore, a 75/25 mixture is 75 percent FPD fluid and 25 percent water.” The following may be less prone to misinterpretation: “For Types II, III, and IV fluids, the fluid concentration is expressed as the volume ratio of neat (undiluted) fluid to water. Therefore, a 75/25 fluid concentration is a mixture by volume of 75 parts neat fluid and 25 parts water.” More examples: “100/0 fluid concentration” means neat fluid; a “50/50 fluid concentration” means a mixture by volume of 50 parts neat fluid and 50 parts water. “Neat” means as-delivered by the fluid manufacturer, without added water by the user. Type II/III/IV fluids, as-delivered by the manufacturer, always contain a freezing point depressant and water. The 100 in “100/0” and the 75 in “75/25” do not refer to the weight or volume concentration of the freezing point depressant in the fluid. By analogy, when a drinker says “I drink my Scotch neat”. It means she wants her Scotch served without added water. It does not mean that there is 100% alcohol (the freezing point depressant) in the Scotch.
Type II/III/IV – forced air application – conditions to use HOT – fluid above LOWV, s 12.a.(2)(c–d)
Type II/III/IV – LOWV, s 10.a.
Type II/III/IV – neat89, s 7.b.(2)
Type II/III/IV – nozzle sample procedure, s 10.a.(1–3)
Type II/III/IV – quality control – viscosity, s 10.a
Type II/III/IV – sampling procedure, s 10.a.(1–3)
Type II/III/IV contamination by RDP on aircraft – by jet blast from other aircraft, s 13.f.(2)
Type II/III/IV contamination by RDP on aircraft – during taxi, s 13.f.(2)
Type II/III/IV contamination by RDP on aircraft – while landing, s 13.f.(2)
Type II/III/IV contamination by RDP on aircraft, s 13.f.(1–2)
Type II/III/IV degradation – chemical contamination90, s 10.c.
Type II/III/IV degradation – excessive shearing – control valves, s 10.c.
Type II/III/IV degradation – excessive shearing – pumps, s 10.c.
Type II/III/IV degradation – excessive shearing – sharp bends in piping, s 10.c.
Type II/III/IV degradation – exposure to alkali organic salts, s 13.e.
Type II/III/IV degradation – exposure to RDP, s 13.f.
Type II/III/IV degradation – heating – oxidation91 10.b.
Type II/III/IV degradation – heating – water loss 10.b.
Type II/III/IV residual fluid – on trailing edge in flight, s 13.i.
Type II/IV – aerodynamic effect on tail surfaces. See aerodynamic effect of fluids
Type II/IV – heated – no reduction in HOT, s 7.b.(7)(b)
Type II/IV residue – guidance (FAA), s 13.i.(1–5)
Type II/IV residue cleaning with aircraft manufacturer recommended cleaning agent, s 13.i.(5)
Type II/IV residue cleaning with hot Type I, s 13.i.(5)
Type II/IV residue cleaning, s 13.i.(5)
Type II/IV residue detection, s 13.i.(4)
Type II/IV residue formation – diluted Type II/IV v neat Type II/IV, s 13.i.(1)
Type II/IV residue formation – European practices conducive to, ss 13.i.(1), 13.i.(3)
Type II/IV residue formation – North American practices preventing, ss 13.i.(1), 13.i.(3)
Type II/IV residue formation – Type II v Type IV, s 13.i.(1) note
Type II/IV residue formation – Type II/IV without hot water or Type I, s 13.i.(2)
Type II/IV residue formation. See also Type II/III/IV residue formation
Type II/IV residue in aerodynamically quiet areas, s 13.i.(4)
Type II/IV residue in and around gaps between stabilizers, elevators, tabs, hinges, s 13.i.(2)
Type II/IV residue in crevices, s 13.i.(4)
Type II/IV residue inspection frequency, s 13.i.(5)
Type II/IV residue inspection of actuators, s 13.i.(5)
Type II/IV residue inspection of flight control bays, s 13.i.(5)
Type II/IV residue inspection, ss 13.i.(4–5)
Type II/IV residue, effect of – on non-powered control surfaces, s 13.i.(2)
Type II/IV residue, effect of – restricted control surface movement, s 13.i.(1)
Type II/IV residue, lubrication of areas affected by, s 13.i.(5)
visibility, METAR, s 9.e.(3) second note
visibility, prevailing – snowfall intensity as a function of. See snowfall visibility table
visibility, prevailing, ss 9.e., 9.e.(3)
visibility, RVR, s 9.e.(3) first note
visibility, surface v tower, s 9.e.(3) second note

89 See footnote 88
90 For example, contamination with other fluids, silicone oil, rust, RDP, jet fuel, diesel fuel, rain water, melted snow, etc.
91 Repeated or prolonged heating of Type II/III/IV can lead to a) water evaporation causing significant viscosity reduction or increase and b) thermal oxidation of the thickener system resulting in viscosity loss.
visibility, surface, s 9.e.(3) second note
visibility, tower, s 9.e.(3) second note
winglets. See wingtip devices
wingtip devices – Boeing B737, s 13.j.(3)
wingtip devices – Boeing B747, s 13.j.(3)
wingtip devices – Boeing B757, s 13.j.(3)
wingtip devices – Boeing B767, s 13.j.(3)
wingtip devices – Boeing MD11, s 13.j.(3)
wingtip devices – raked wingtips, s 13.j.
wingtip devices – scimitar, s 13.j.
wingtip devices – scimitar, split, s 13.j.
wingtip devices – sharklets, s 13.j.
wingtip devices – strakes, s 13.j.
wingtip devices – winglets, s 13.j.

Revised 2017-10-12 by the FAA.

This document provides the holdover time guidelines and allowance times for generic and specific fluids. It is considered by the FAA to be official guidance on the use of the holdover time guidelines and allowance times. It includes a list of fluid tested for anti-icing performance and aerodynamic acceptance. It is designed to be used with FAA N 8900.431 Revised FAA-Approved Deicing Program Updates, Winter 2017-2018.

On October 12, 2017, the FAA (and Transport Canada) issued a revision of the 2017-2018 Holdover Time Guidelines. Optional additional holdover time guidelines in the temperature range of -3°C to -8°C for snow, snow grains, and snow pellets and their adjusted equivalents for slats and flaps deployed prior to deicing.

Keywords:
aerodynamic acceptance test results – high speed ramp, Tables 41–44
APS Aviation, p B-2
Scientific Material International (SMI), p B-2
aerodynamic acceptance test results – low speed ramp, Tables 41, 43
allowance time – EG v PG Type IV based fluids, Table 39
allowance time – precipitation stops, when, Tables 38–39
allowance time – rotation speed 100 knots minimum – Type III fluids, Table 38

92 US, Federal Aviation Administration, “FAA Holdover Time Guidelines Winter 2017-2018 – Revision 1.0: October 12, 2017”, online:
<https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/media/FAA_2017-18_HoldoverTablesR1.pdf>
Guide to Aircraft Ground Deicing – Issue 6

allowance time – rotation speed 100 knots minimum – Type IV EG fluids, Table 39
allowance time – rotation speed 115 knots minimum – Type IV PG fluids, Table 39
allowance time – temperature decreasing, Tables 38–39
allowance time precipitation type – ice pellets, light – mixed with snow, Tables 38–39
allowance time precipitation type – ice pellets, light – mixed with freezing drizzle, Tables 38–39
allowance time precipitation type – ice pellets, light – mixed with freezing rain, Tables 38–39
allowance time precipitation type – ice pellets, light – mixed with rain, Tables 38–39
allowance time precipitation type – ice pellets, light, Table 38–39
allowance time precipitation type – ice pellets, moderate, Tables 38–39
allowance time precipitation type – small hail, light, Tables 38–39
allowance time precipitation type – small hail, moderate, Tables 38–39
allowance time precipitation type – small hail, moderate – mixed with freezing drizzle, Table 39
allowance time precipitation type – small hail, moderate – mixed with rain, Table 39
allowance time, 76% adjusted – flaps and slats deployed, Tables ADJ-38, ADJ–39
allowance time, Type III neat, Table 38
allowance time, Type III unheated, Table 38
allowance time, Type IV neat, Table 39
AMIL, Cautions and Notes for Tables 41, 42, 43, 44, p B-2,
definition – LOUT, Cautions and Notes for Tables 41, 42, 43, 44 at note 3
EG v PG Type IV based fluids – allowance time. See allowance time – EG v PG based fluids

fluid application – guidelines, Tables 45–48
fluid application – one-step, Tables 45–48
fluid application – temperature limits, Tables 45–48
fluid application – two-step, Tables 45–48
fluid application – wing skin temperature lower than OAT, Tables 45–48
fluid application, anti-icing – clean aircraft, on, Tables 46–48
fluid application, anti-icing – insufficient amount, Tables 46–48
fluid application, deicing – temperature application minimum, Tables 45–48
fluid application, deicing – temperature at nozzle, minimum 60°C, Tables 45–48
fluid failure, early – flaps and slats deployed. See flaps and slats deployed
fluid manufacturer documentation – aerodynamic acceptance data, Cautions and Notes for Tables 41, 42, 43, 44 at “Cautions”
fluid manufacturer documentation – freezing point v dilution data, Cautions and Notes for Tables 41, 42, 43, 44 at note 4
fluid manufacturer documentation – LOUT, Cautions and Notes for Tables 41, 42, 43, 44 at note 3
fluid manufacturer documentation – materials compatibility data, Cautions and Notes for Tables 41, 42, 43, 44 at “Cautions”
fluid manufacturer documentation – toxicity data, Cautions and Notes for Tables 41, 42, 43, 44 at “Cautions”
fluid manufacturer documentation – Type I/II/III/IV technical requirement data, Table 8 caution at p 55
HOT guidance (FAA), Subtitle at p 1
HOT, 76% adjusted – flaps and slats deployed, Tables ADJ-1 to ADJ-39
HOT, 76% adjusted v standard [unadjusted]. See flaps and slats deployed – guidance
flaps and slats deployed – guidance, p 6
HOT, adjusted v standard HOT, p6
HOT, FAA – changes for winter 2017–2018, pp 5-6
HOT, FAA, Title at p 1
HOT, flaps and slats deployed. See HOT, 76% adjusted – flaps and slats deployed
HOT, frost, Table 1
HOT, Type I – aluminum surface, Table 2
HOT, Type I – composite surface, Table 3
HOT, Type I/II/III/IV frost, Table 1
HOT, Type II fluid-specific, Tables 5–19, Tables C-1 and C-2
HOT, Type II generic, Table 4
HOT, Type II/II/IV non-standard dilutions, p 6
HOT, Type III fluid specific heated, Tables 18–19
HOT, Type III fluid specific unheated, Tables 16–17
HOT, Type III fluid-specific, Tables 16–19
HOT, Type III generic – none
HOT, Type IV fluid-specific, Tables 21–37, Table C-1 and C-2
HOT, Type IV generic, Table 20
laboratories, testing – Anti-icing Materials International Laboratory (AMIL), p B-2
laboratories, testing – APS Aviation, p B-2
laboratories, testing – Scientific Material International (SMI), p B-2
list of fluids (FAA), Tables 41–44
LOUT – definition, Cautions and Notes for Tables 41, 42, 43, 44 at note 3, Table 45–48
LOUT table (FAA), Tables 41–44
LOWV table (FAA), Tables 42–44
snowfall intensity. See also HOT precipitation rate
snowfall intensity – heavy, Table 40
snowfall intensity – light, Table 40
snowfall intensity – moderate, Table 40
snowfall intensity – very light, Table 40
snowfall intensity overestimation due to obscuration – fog, Table 40
snowfall intensity overestimation due to obscuration – haze, Table 40
snowfall intensity overestimation due to obscuration – smoke, Table 40
snowfall intensity overestimation due to obscuration, Table 40
snowfall intensity visibility table. See snowfall visibility table
snowfall visibility table (FAA), Table 40
snowfall intensity, ASOS reported, Table 40
snowfall intensity, weather observer reported, Table 40
laboratories, testing, p B-2
three minute rule, Tables 45–48
Type II/III/IV viscosity, fluid manufacturer methods, Table 42–44
viscosity measurement method – precedence of fluid manufacturer method over AS9968 Table 8 note 8 at p 55
visibility, METAR, Table 40 notes 4, 5
visibility, prevailing, Table 40
visibility, rounding of, Table 40 note 5
visibility, RVR, Table 40 note 3
visibility, surface v tower, Table 40 note 4
visibility, surface, Table 40 note 4
visibility, tower, Table 40 note 4

FAA Holdover Time Regression Guidelines Information, Winter 2017-2018 – Original Issue: August 9, 2017

Issued 2017-08-09 by the FAA

93 None published.
94 Snowfall intensity v snowfall rate. Snowfall intensity is expressed as very light snow, light snow, moderate snow and heavy snow whereas snowfall rates are expressed in g/dm^2/h or liquid water equivalent rates in mm/h or in/h.
This document, updated every year, provides the regression coefficients to calculate holdover times under various weather conditions.

Typically, real-time weather data is fed to a holdover time determination system (HOTDS) which uses the real time weather data and best-fit power law curves with the appropriate regression coefficients to calculate holdover times.

A similar document is issued by the Transport Canada.

Keywords:
- check time determination system
- HOT 76% adjusted – regression calculations
- HOT regression information – changes in 2017-2018
- HOT regression limitations – caution outside precipitation rate limits
- HOT regression limitations – no allowance times
- HOT regression limitations – no interpolation for Type II/III/IV non-standard dilutions
- HOT regression limitations – no regression coefficients for frost
- HOT regression limitations – use at > 0°C
- HOT regression limitations – use of LUPR
- HOT regression limitations – use of snow precipitation rate ≤ 50g/dm²/h
- HOT regression limitations – use with CTDS/HOTDS conforming to Advisory Circular (FAA)
- HOT regression limitations
- HOT, Type I generic – regression calculations
- HOT, Type I generic – regression coefficients
- HOT, Type II – regression grandfathered data obsolete
- HOT, Type II fluid specific – regression calculations
- HOT, Type II fluid specific – regression coefficients
- HOT, Type II generic – HOT minimum (worst case) values of all Type II
- HOT, Type II generic – regression calculations
- HOT, Type II generic – regression coefficients
- HOT, Type III fluid specific – regression calculations
- HOT, Type III fluid specific – regression coefficients
- HOT, Type IV fluid specific – regression calculations
- HOT, Type IV fluid specific – regression coefficients
- HOT, Type IV generic – HOT minimum (worst case) values of all Type IV
- HOT, Type IV generic – regression calculations
- HOT, Type IV generic – regression coefficients
- HOTDS
- HUPR, snow
- LUPR, snow
- regression coefficient tables, interpretation of
- regression coefficients – best fit power law

95 The Transport Canada HOT Regression Information document does not mention check time determination systems.
Aircraft Deicing Documents – Issued by the FAA

FAA Advisory Circular AC 120-60B Ground Deicing and Anti-icing Program

Issued 2004-12-20 by the FAA.

This document provides guidance to obtain FAA approval of ground deicing/anti-icing programs in accordance to Title 14 of the Code of (US) Federal Regulations (14 CFR) part 12, section 121.629.

Keywords:
14 CFR § 121.629, s 1
AC 120-60B, Title at p 1
anti-icing – definition, s 3.a.
anti-icing fluid – definition ss 3.a.(1–5)
check, icing. See preflight check; post deicing/anti-icing check; pretakeoff check; pretakeoff contamination check
check, post application. See post deicing/anti-icing check
critical aircraft surfaces. See critical surface
critical surface – airframe manufacturer defined, s 6.d.(1)
critical surface – control surface, s 6.d.(a)
critical surface – empennage, s 6.d.(a)
critical surface – engine inlets, s 6.d.(a)
critical surface – fuel vents, s 6.d.(a)
critical surface – wings, s 6.d.(a)
definition – anti-icing , s 3.a.
definition – anti-icing fluid, ss 3.a.(1–5)
definition – deicing fluid, ss 3.b.(1–6)
definition – deicing , s 3.b.
definition – frozen contaminants, s 3.c.
definition – hard wing, s 6.e.(2)(a)
definition – HOT range, s 6.c.(3)
definition – HOT, s 3.d.
definition – post deicing/anti-icing check (FAA), ss 3.g., 6.e.(3)
definition – pretakeoff check (FAA), s 3.e.

97 The appears to be four kinds of icing checks: 1) preflight check (aka contamination check) performed by the flightcrew or ground crew to establish the need to deicing/anti-icing), 2) post deicing/anti-icing check (aka post deicing check, post application check), an integral part of the deicing/anti-icing process, 3) pretakeoff check performed within the holdover time and 4) the pretakeoff contamination check performed after the holdover time has expired.
definition – pretakeoff contamination check (FAA), s 3.f.
deicing – definition, s 3.b.
deicing fluid – definition, s 3.b.(1–6)
FAA AC 120-60, Title at p 1
frost, acceptable amount underwing (FAA), s 6.d.
frozen contaminants – definition, s 3.c.
frozen contamination – effect on (rapid) pitch up and roll-off during rotation, s 6.g.(2)(a)
frozen contamination – effect on control, s 6.g.(2)(a)
frozen contamination – effect on drag, s 6.g.(2)(a)
frozen contamination – effect on engine foreign object damage, s 6.g.
frozen contamination – effect on instrument pick up points, s 6.g.(2)(a)
frozen contamination – effect on lift, s 6.g.(2)(a)
frozen contamination – effect on ram air intakes, s 6.g.(2)(a)
frozen contamination – effect on stall at lower-than-normal angle of attack, s 6.g.(2)(a)
frozen contamination – effect on weight, s 6.g.(2)(a)
frozen contamination – effect on winglets s 6.g.(2)(a)
frozen contamination – effect on buffet or stall before activation of stall warning s 6.g.(2)(a)
frozen contamination – effect on hard wing aircraft (without leading edge device) s 6.g.(2)(a)
ground deicing/anti-icing program (FAA) – approval, ss 1., 5.
ground deicing/anti-icing program (FAA) – program elements, s 6.
ground deicing/anti-icing program (FAA), approved – operations in lieu of, s 7.
hard wing – definition, s 6.e.(2)(a)
HOT – definition, s 3.d.
HOT range – definition, s 6.c.(3)
HOT, end of, s 6.c.(3)
HOT, start of, s 6.c.(3)
HOT, variables affecting, s 6.c.
ice accretion, in-flight, s 6.g.(2)(b)
phraseology, use of standard s 6.f.
post deicing/anti-icing check. See post deicing/anti-icing check
post deicing check. See post deicing/anti-icing check
post deicing/anti-icing check (FAA)\(^98\) – definition, s 3.g., 6.e.(3)
post deicing/anti-icing check (FAA) – integral part of deicing/anti-icing process, ss 6.e., 6.e.(3)
post deicing/anti-icing check (FAA) – recordkeeping mandatory, s 6.f.(3)D
program, ground deicing/anti-icing (FAA)
pretakeoff check (FAA) – by flightcrew, s 6.e.(1)
pretakeoff check (FAA) – definition, s 3.e.
pretakeoff check (FAA) – flightcrew situational awareness, s 6.e.(1)
pretakeoff check (FAA) – guidance, s 6.e.(1)
pretakeoff check (FAA) – regulation 14 CFR § 121.629(c)(3), s 6.e.(1)
pretakeoff check (FAA) – within HOT, ss 3.e., 6.e.(1)
pretakeoff contamination check (FAA) – definition, s 3.f.
pretakeoff contamination check (FAA) – guidance ss 3.f., 6.e.(2)
pretakeoff contamination check (FAA) – regulation 14 CFR § 121.629(c)(3)(i), ss 3.f., 6.e.(2)
pretakeoff contamination check (FAA) – when HOT exceeded, ss 3.f., 6.e.(2)
pretakeoff contamination check (FAA) – within 5 minutes of takeoff, ss 3.f., 6.e.(2)
representative surface, ss 3.e., 6.d.
training – FAA requirements s 6.g.

\(^{98}\) AC 120-60 appears to use different terms for the check that is an integral part of the deicing/anti-icing process:
SAE documents usually call is “post deicing/anti-icing check” such as in ARP4737H s 8.1.2, AS6285 s 7.3,
ARP5149B s 10.12.7.
FAA Advisory Circular AC 120-112 Use of Liquid Water Equivalent System to Determine Holdover Times or Check times of Anti-icing Fluids

Issued 2015-07-14 by the FAA.

Although the FAA does not certify or approve specific liquid water equivalent system (LWES), some US aircraft operators (§ 121.629(c) category) may be required by US law to seek FAA authorization to rely on the use of LWES. This document provides the FAA minimum standard for use of LWES and guidance to those proposing to design, procure, construct, install, activate or maintain LWES. An LEWS is an automated system that measures the liquid water equivalent rate of freezing or frozen precipitation. The LEWS system, using the measured LWE rate and endurance time regression equations, calculates holdover time (HOT) or check time (CT).

Keywords:
anti-icing fluid – definition, Appendix 2
check time – definition, Appendix 2
check time determination system – definition, Appendix 2
check time determination system guidance (FAA), s 1-1
check time determination system subset of LWES, s 1-1
definition – anti-icing fluid, Appendix 2
definition – check time determination system, Appendix 2
definition – check time, Appendix 2
definition – deicing fluid, Appendix 2
definition – endurance time regression analysis, Appendix 2
definition – endurance time, Appendix 2
definition – glycol pan measurement, Appendix 2
definition – HOT, Appendix 2
definition – HOT tables, appendix 2
definition – LWE rate, Appendix 2
definition – LWE sampling time, Appendix 2
definition – LWES, s 1-1, Appendix 2
definition – regression analysis, endurance time, Appendix 2
deicing fluid – definition, Appendix 2
endurance time – definition, Appendix 2
endurance time regression analysis – definition, Appendix 2
endurance time regression equations, s 1-1
freezing drizzle subset of supercooled large droplets, s 3-11
freezing rain subset of supercooled large droplets, s 3-11
glycol pan measurement – definition, Appendix 2
holdover time determination system. See HOTDS
HOT – definition, Appendix 2
HOT tables – definition, Appendix 2
HOTDS – guidance (FAA), s 1-1
HOTDS subset of LWES, s 1-1
LWE rate – definition, Appendix 2
LWE sampling time – definition, Appendix 2
LWES – authorization for freezing drizzle (FAA), s 3-9
FAA Advisory Circular AC 150/5300-14C Design of Aircraft Deicing Facilities

Revised 2013-08-07 by the FAA.

This document provides guidance and recommendations of the designing of deicing facilities. It covers the sizing, siting, environmental considerations and operational requirements to maximize

152
deicing capacity while maintaining safety and efficiency. There is particular emphasis on centralized deicing facilities and the particular issues associates with such facilities. Design considerations for infrared deicing facilities are discussed.100

Keywords:
14 CFR § 139, s 2. at p i, s 4.b. at p i101
AC 150/5300-14C, Title at p i
ADF, spent – use as RDP, s 6.6a.
ADF, spent. See also CDF runoff mitigation – spent ADF; deicing facility, terminal gate – spent ADF collection
aircraft deicing facility. See deicing facility
aircraft parking area length, s 3.1a.(2)
aircraft parking area width, s 3.1a.(1)
aircraft parking area, deicing pad – definition, s 1.2c.(1)
Airport Certification Manual (US), s 2. at p i
Airport Improvement Program (US), s 2. at p i
airport, certificated (FAA), s 2. at p i
CDF – definition, s 1.2b.
CDF air traffic control tower line-of-sight, s 2.2c.
CDF aircraft access routes, s 4.
CDF benefits – aircraft retreatment near departure runway, s 2.1b.
CDF benefits – avoiding changing weather along long taxiing routes, s 1.1b.(2)
CDF benefits – improved airfield flow, s 2.1b.
CDF benefits – reduced taxing time, s 1.1b.(2)
CDF capacity, s 2.3
CDF common deicing procedures for all users, s 1.1
CDF common deicing procedures– safety benefits, s 1.1
CDF components – bypass taxiing capability for aircraft not needing deicing, ss 2.1c., 2.8
CDF components – control enter, s 2.1c.
CDF components – crew shelter, s 2.1c.
CDF components – deicing pads ss 2.1c., 2.9
CDF components – deicing unit ss 2.1c., 2.5b.
CDF components – environmental runoff mitigation ss 2.1c., 2.5e.
CDF components – fluid storage and handling ss 2.1c., 2.6
CDF components – lighting system ss 2.1c., 2.7
CDF control center, ss 4.c. at p i, 2.1c.
CDF deicing pad, factors affecting number of – deicing procedure, s 2.4a.
CDF deicing pad, factors affecting number of – peak hour departure rate, s 2.4
CDF deicing pad, factors affecting number of – preflight inspection, s 2.4a.(1)
CDF deicing pad, factors affecting number of – type of aircraft, s 2.4a.(3)
CDF deicing pad, factors affecting number of – type of deicing units, s 2.4a.(4)
CDF deicing pad, factors affecting number of – variation in meteorological conditions, s 2.4a.(2)
CDF deicing pad, factors affecting number of, s 2.4
CDF environmental considerations – receiving water aquatic communities quality, s 6.1
CDF environmental considerations – receiving water quality, s 6.1

100 Infrared deicing facilities were built at JFK airport in NY, Buffalo NY, Newark NJ, Rhinelander NY, and Oslo, Norway. Buffalo, Newark, and Oslo facilities were dismantled. JFK and Rhinelander is not operational. The builder of infrared facilities is no longer offering them for sale [FAA private communications. June 2016].
101 AC 150/5300-14C has an introductory section at pp i to iv that uses the same section numbering as the main document. When the referring to a section in the introductory part, the pages are indicated.
CDF environmental considerations. See also CDF runoff mitigation
CDF holding bays, s 4.1a.
CDF location and sizing, factors affecting – aircraft type fleet mix, s 2.5c.
CDF location and sizing, factors affecting – airport layout, s 2.12
CDF location and sizing, factors affecting – airport safety programs, s 2.5f
CDF location and sizing, factors affecting – deicing queues, s 2.9
CDF location and sizing, factors affecting – environmental considerations, s 2.5e
CDF location and sizing, factors affecting – HOT and time to takeoff clearance time, s 2.5
CDF location and sizing, factors affecting – lighting, s 2.7
CDF location and sizing, factors affecting – restriction of type of deicing fluid, s 2.5a
CDF location and sizing, factors affecting – taxiing times and routes, s 2.5d, 2.8
CDF location and sizing, factors affecting – topography, s 2.10
CDF location and sizing, factors affecting – type of deicing fluids used, s 2.5a
CDF location and sizing, factors affecting – type of deicing unit, ss 2.4(4), 2.5b
CDF location and sizing, factors affecting – utilities, s 2.11
CDF location and sizing, factors affecting, s 2.5
CDF operational issues, s 1.1
CDF pavement requirements, s 3.6
CDF runoff mitigation – aerobic treatment, ss 6.2a, 6.7
CDF runoff mitigation – anaerobic biochemical reactor, ss 6.2c, 6.7
CDF runoff mitigation – biomass, s 6.7
CDF runoff mitigation – BOD, s 6.1b.
CDF runoff mitigation – COD, s 6.1b.
CDF runoff mitigation – diversion boxes, s 6.2f.
CDF runoff mitigation – flow rate limits 6.1b.
CDF runoff mitigation – lifecycle cost, s 6.2
CDF runoff mitigation – mechanical aeration of detention basins, ss 6.2c., 6.7
CDF runoff mitigation – metered discharge from detention basin, s 6.2b.
CDF runoff mitigation – oil and grease, s 6.1b.
CDF runoff mitigation – pH, s 6.1b.
CDF runoff mitigation – POTW (US) ss 6.1a., 6.1b., 6.3, 6.7
CDF runoff mitigation – recycled water s 6.6b.
CDF runoff mitigation – recycling glycol, ss 6.2c., 6.6
CDF runoff mitigation – recycling system, ss 6.2c., 6.6
CDF runoff mitigation – runoff control at the source, s 6.1a.
CDF runoff mitigation – spent ADF detention basins, s 6.4
CDF runoff mitigation – spent ADF storage tanks, ss 6.2d., 6.5
CDF runoff mitigation – TOC, s 6.1b.
CDF runoff mitigation – total suspended solids, s 6.1b.
CDF runoff mitigation – urea algae blooms in detention basins, s 6.4d.
CDF runoff mitigation – wildlife management near detention basins, s 6.4c.
CDF runoff mitigation, s 6
CDF safety risk management mandatory before construction (FAA), s 1.5
CDF separation standards, s 2.2a.-b.
CDF service provider, single, s 1.1
CDF siting, s 1.1b.
CDF snow desk, s 4.c. at p i, s 2.1c.
CDF superset of remote deicing facility, s 4. at p i
CDF vehicle safety zone, s 4.d. at p ii, s 3.4c.
CDF vehicle service roads, s 4.2
CDF, design of, Title at p i
CDF, multiple, s 2.4b.
CDF, overview of, s 1.1
CDF, role of, s 1.1a.

CDF. See also deicing facility
centralized aircraft deicing facility. See CDF
definition – aircraft parking area, deicing pad, s 1.2c.(1)
definition – CDF, s 1.2b.
definition – deicing facility, s 1.2a.
definition – deicing pad aircraft parking area, s 1.2c.(1)
definition – deicing pad maneuvering area for deicing units, s 1.2c.(2)
definition – deicing pad, s 1.2c.
definition – HOT, s 1.2d.
deicing facility – capacity, s 2.3
deicing facility – definition, s 1.2a.
deicing facility – design, Title at p i

deicing facility safety risk management mandatory before construction (FAA), s 1.5
deicing facility safety risk management, s 1.5
deicing facility stakeholders – air taxis, s 1.3a.
deicing facility stakeholders – air traffic control, s 1.3a.
deicing facility stakeholders – aircraft rescue and firefighting chief, s 1.3a.
deicing facility stakeholders – airport environmental manager, s 1.3a.
deicing facility stakeholders – airport operations chief, s 1.3a.
deicing facility stakeholders – engineering design contractor, s 1.3a.
deicing facility stakeholders – general aviation, s 1.3a.
deicing facility stakeholders – ground deicing managers, s 1.3a.
deicing facility stakeholders – other authorities, s 1.3b.
deicing facility stakeholders – pilot organizations, s 1.3a.
deicing facility stakeholders – regulator, s 1.3a.
deicing facility stakeholders – station managers of air carriers, s 1.3a.
deicing facility, centralized aircraft. See CDF
deicing facility, infrared. See infrared deicing facility
deicing facility, off-gate102 ss 1.1, 2.1
deicing facility, off-gate. See also CDF
deicing facility, on-gate excludes CDF ss 1.1, 2.1
deicing facility, remote aircraft. See CDF
deicing facility, remote subset of CDF103, s 4 at p i
deicing facility, terminal gate – apron drainage, s 2.1a.
deicing facility, terminal gate – capacity, s 2.3
deicing facility, terminal gate – cost of glycol mitigation issues, s 2.1b.
deicing facility, terminal gate – environmental issues, ss 1.1b(1), 2.1a.
deicing facility, terminal gate – gate delays issues, s 2.1b.
deicing facility, terminal gate – lack of gate for deicing issues, s 2.1b.
deicing facility, terminal gate – spent ADF collection, s 2.1a.
deicing facility, terminal gate – taxing time issues, ss 1.1b(1), 2.1a., 2.1b.
deicing facility, terminal gate excludes CDF, ss 1.1, 2.1
deicing pad – definition, s 1.2c.
deicing pad – fixed deicing unit considerations, s 3.2

deicing pad aircraft parking area – definition, s 1.2c.(1)
deicing pad grouping, ss 3.4b.(2), 3.5a.(2)
deicing pad layout, s 3.5

102 AC 150/5300-14C defines all off-gate deicing facilities as centralized deicing facilities, see s 1.1.
103 In AC 150/5300-14C, the term “centralized aircraft deicing facility” includes “remote aircraft deicing facility” and the expression “remote deicing facility” was dropped from the definition (s 4a at p i). In the Guide, we abbreviate centralized deicing facility as CDF.
deicing pad maneuvering area for deicing units – definition, s 1.2c.(2)
deicing pad orientation – high winds, s 3.5b.
deicing pad orientation – jet blast, s 3.5c.
deicing pad orientation – prevailing wind, s 3.5b.
deicing pad orientation – visibility, s 3.5b.
deicing pad orientation – with respect to taxiway, s 3.5b.
deicing pad safety risk management mandatory before construction (FAA), s 1.5
deicing pad separation standards, s 3.2, Table 3-1
deicing pad surface markings – boundary markings, s 3.4b.
deicing pad surface markings – pad grouping marking, s 3.4b.(2)
deicing pad surface markings – taxiway centerline, ss 3.2, 3.4a.
deicing pad surface markings – taxiway holding position marking, s 3.4b.(1)
deicing pad surface markings – vehicle safety zone marking, s 3.4c.
deicing pad surface markings, s 3.4
deicing pad taxiway centerline requirement, s 3.2
deicing pad vehicle safety zone, s 3.2, 3.4c.
deicing pad, composite, ss 3.4b.(2), 3.5a.(2)
deicing pad, number of, s 2.4
deicing unit, fixed – gantry, s 2.5b.(2)
deicing unit, fixed – telescopic boom, s 2.5b.(2)
deicing unit, fixed, s 3.3
FAA-approved Snow and Ice Control Plan, s 4b. at p i
fluid manufacturer documentation – fluid transfer system requirements, s 2.6a
fluid manufacturer documentation – fluid storage requirements, s 2.6b
gantry, s 2.5b.(2)
HOT – definition, s 1.2d.
HOT v taxiing time, s 2.1a.
HOT v time from start of last step to takeoff clearance, s 2.5
HOT, end of, s 1.2d.
HOT, start of, s 1.2d.

ice detection camera. See ROGIDS
infrared deicing facilities, list of. See footnote 100
infrared deicing facility – ROGIDS recommended, s 4e. at p ii, s 5.9
infrared deicing facility, design of, ss 5.1-5.18
maneuvering area for deicing units – vehicle lane width, s 3.1b.
maneuvering area for deicing units, s 1.2c.(2)
message boards – use at CDF, s 3.6
passenger facility charges (US), s 2. at p i
POTW (US), ss 6.1b., 6.3, 6.7
RDP, spent ADF as, s 6.6a.
remote aircraft deicing facility. See CDF; DDF
ROGIDS for infrared deicing facilities, s 4.e. at p ii
Snow and Ice Control Plan, FAA-approved, s 4.b. at p i
snow desk, s 2.1c.(4)
takeoff clearance v HOT, s 2.5
taxiing time v HOT, ss 2.1a., 2.5
taxiing time, acceptable, ss 2.1a.
taxiing time, slower in winter-contaminated conditions, s 2.5
telescopic boom, fixed, d 2.5b.(2)
vehicle safety zone, s 4.d. at p ii, s 5.9
Documents Issued by Transport Canada

Transport Canada Holdover Time Guidelines: Winter 2017-2018. Revision 1.0

Revision 2017-10-12 by Transport Canada.

This document, updated every year, provides the holdover time guidelines as published by Transport Canada and changes to the Transport Canada Guidelines of Aircraft Ground-Icing Operations TP 14052E. The Transport Canada Holdover Time Guidelines are meant to be used in conjunction with TP 14052E where additional guidance on aircraft ground deicing can be found.

On October 12, 2017, Transport Canada (and the FAA) issued a revision of the 2017-2018 Holdover Time Guidelines. Optional additional holdover time guidelines in the temperature range of -3°C to -8°C for snow, snow grains, and snow pellets and their adjusted equivalents for slats and flaps deployed prior to deicing.

Keywords:
adhesion, factors affecting ice crystals/dry snow. See dry snow
aerodynamic acceptance test results – Type I Table 41
aerodynamic acceptance test results – Type II Table 42
aerodynamic acceptance test results – Type III Table 43
aerodynamic acceptance test results – Type IV Table 44
alkali organic salt based Type I–TC guidance, s 10.8.1 at p B-3
allowance time – EG v PG Type IV based fluids, Tables 39, ADJ-39
allowance time – extension time, s 11.1.15 at p B-8, s 11.1.16 (b) at pp B-8, B-9, Tables 38–39,
allowance time – precipitation stops, when, s 11.1.15 at p B-8, s 11.1.16 (b) at pp B-8, B-9, Tables 38–39
allowance time – rotation speed 100 knots minimum – Type III fluids, s 11.1.16 (c)4) at p B-9, Table 38
allowance time – rotation speed 100 knots minimum – Type IV EG fluids, 11.1.16 (c)4) at p B-9, Table 39
allowance time – rotation speed 115 knots minimum – Type IV PG fluids, 11.1.16 (c)4) at p B-9, Table 39
allowance time – temperature decreasing, s 11.1.16 (c)8) at p B-9, Tables 38–39
allowance time – temperature increasing, s 11.1.16 at pp B-8 to B-10, Tables 38–39
allowance time – temperature stable, ss 11.1.16 (b) at p B-9, Tables 38–39
allowance time for METAR code GS. See METAR code GS; METAR code GS, interpretation of allowance time guidance (TC), pp 4, 6, 11, s 10.4 at pp B-2, B-3, s 11.1.2 at p B-5, s 11.1.8 at p B-7, s 11.1.15 at p B-8, s 11.1.16 at pp B-8 to B-10, s 11.1.2 at p B-10, , s 12.1.7.7 at p B-12, s 12.1.9 at p B-13, s 12.1.10 at pp B-13 to B-14, , s 12.3, at p B-14, Tables 38–39
allowance time precipitation type – ice pellets, light – with mixed precipitation, s 11.1.16 at pp B-8 to B-10, Tables 38–39
allowance time precipitation type – ice pellets, light, s 11.1.16 at pp B-8 to B-10, Tables 38–39
allowance time precipitation type – ice pellets, moderate, s 11.1.16 at pp B-8 to B-10, Tables 38–39
allowance time precipitation type – small hail, s 11.1.16 at pp B-8 to B-10, Tables 38–39

allowance time \(\text{v} \) HOT, s 11.1.5 at p B-8
allowance time, 76\% adjusted – flaps and slats deployed, pp 6, A-1, Tables ADJ-38, ADJ-39
allowance time, end of, s 11.1.16 at pp B-8 to B-10
allowance time, extension with pretakeoff contamination inspection – none, s 11.1.16 (c) 6) at pp B-9
allowance time, start of, s 11.1.16 at pp B-8 to B-10
allowance time, Type I – none, s 11.1.16 (c) 2) at p B-9
allowance time, Type II – none, s 11.1.16 (c) 2) at p B-9
allowance time, Type III neat, s 11.1.16 (c) 2) at p B-9
allowance time, Type III unheated, s 11.1.16 (c) 2) at p B-9, Table 38
allowance time, Type IV neat, s 11.1.16 (c) 2) at p B-9, Table 39
AMIL, s 8.1.4.1 at p B-2
anti-icing fluid – definition, s 8.1.2 at p B-2
anti-icing fluid – protection time, limited, s 8.1.2 at p B-2
APS Aviation, s 8.1.4.1 at p B-2
Boeing B737 wingtip devices, s 11.2.3.5 at p B-10
Boeing B747 wingtip devices, s 11.2.3.5 at p B-10
Boeing B757 wingtip devices, s 11.2.3.5 at p B-10
Boeing B767 wingtip devices, s 11.2.3.5 at p B-10
Boeing MD11 wingtip devices, s 11.2.3.5 at p B-10
brooms. See frozen contamination, removal of – with brooms
check, tactile – mandatory TC – removal of frozen contamination with brooms, s 10.12.1 at p B-4
definition – anti-icing fluid, s 8.1.2 at p B-2
definition – frost, active, s 12.1.7.1 at p B-11
definition – LOUT, note 3 at p 58
definition – LOWV, s 18 at p B-14
definition – MOWV, s 18 at p B-14
dry snow – accumulation on wing – removal required, s 12.1.6 at p B-10
dry snow, adhesion of – effect of fuel tanks (heat releasing), s 12.1.6 at p B-10
dry snow, adhesion of – effect of refueling, s 12.1.6 at p B-10
dry snow, adhesion of – effect of weather, s 12.1.6 at p B-10
dry snow, adhesion of – effect of wing temperature, s 12.1.6 at p B-10
flaps and slats deployed – guidance, p 6, s 12.3 at p B-14
flightcrew – HOT re-evaluation in improving weather condition – guidance (TC), s 11.1.4.1 at p B-6
flightcrew – HOT re-evaluation in worsening weather conditions – guidance (TC), s 11.1.4.1 at p B-6
flightcrew – HOT re-evaluation. See also pilot assessment of precipitation intensity
fluid application – guidance (TC), s 10.4.2 at p B-3
fluid application – guidelines, Tables 45–48
fluid application – in a hangar of T-tail aircraft, s 10.11.1 at p B-4
fluid application – in a hangar, s 10.11.1 at p B-4
fluid application – one-step, s 10.4.2 at pp B 5–6, Tables 45–48
fluid application – symmetrical, s 10.4 at p B-3, s 12.6.7 at p B-14
fluid application – temperature limits, Tables 45–48
fluid application – two-step, s 10.4.2 at pp B 5–6, Tables 45–48
fluid application – wing skin temperature lower than OAT see cautions, Tables 45–48
fluid application, anti-icing – clean aircraft, Tables 46–48
fluid application, anti-icing – insufficient amount, Tables 46–48
fluid application, deicing – temperature application minimum, Tables 45–48
fluid application, deicing – temperature at nozzle, minimum 60°C, Tables 45–48
fluid freezing in flight – residual fluid on trailing edge, s 12.9 at p B-14
fluid manufacturer documentation – aerodynamic acceptance data, s 11.1.9 at p B-7, Tables 41–44
fluid manufacturer documentation – freezing point v dilution data, LOUT, Tables 41–44, Tables 41–44
cautions and note 4 at p 58
fluid manufacturer documentation – LOUT, Tables 45–48 cautions
fluid manufacturer documentation – materials compatibility data, s 11.1.9 at p B-7, Table 45–48 cautions at p 58
fluid manufacturer documentation – toxicity data, s 11.1.9 at p B-7, Table 45–48 cautions at p 58
fluid manufacturer documentation – Type I/II/III/IV certificate of conformance, s 11.1.9 at p B-7, Table 45–48
cautions at p 58
fluid manufacturer documentation – Type I/II/III/IV technical requirement data, s 11.1.9 at p B-7, Table 45–48
cautions at p 58
fluid, acceptable – TC does not approve, s 8.1.4 at p B-2
fluid, approval – guidance (TC), s 8.1.4 at p B-2
fluid, qualified – TC does not qualify, s 8.1.4 at p B-2
fluid, residual – on trailing edge, s 12.9 at p B-14
fog. See snowfall intensity overestimation due to obscuration
freezing fog. See snowfall intensity overestimation due to obscuration
freezing point above OAT. See freezing point buffer, negative
freezing point buffer, negative
frost – deceptively dangerous – drag increase, s 12.1.7 at p B-11
frost – deceptively dangerous – lift degradation, s 12.1.7 at p B-11
frost appearance, s 12.1.7 at p B-11
frost formation – effect of surface composition, s 12.1.7.3 at p B-12
frost formation – effect of surface finish, s 12.1.7.3 at p B-12
frost formation conditions – clear sky, s 12.1.7.3 at p B-12
frost formation conditions – cloudless nights, low wind (radiation cooling), s 12.1.7.3 at p B-12
frost formation conditions – cold-soaked fuel – risk of fluid below LOUT, s 12.1.7.4 at p B-12
frost formation conditions – cold-soaked fuel (conductive cooling), s 12.1.7.4 at p B-12
frost formation conditions – low light, shade, obscured sun, s 12.1.7.3 at p B-12
frost formation conditions – surface below OAT and at or below frost point, s 12.1.7.1 at p B-11
frost formation mechanism – conductive cooling, s 12.1.7.4 at p B-12
frost formation mechanism – radiation cooling, s 12.1.7.3 at p B-12
frost formation, ss 12.1.7.1 to 12.1.7.5 at pp B11–12
frost on fuselage, s 12.1.7 at p B-11
frost on lower wing surface, s 12.1.7 at p B-11, s 12.1.7.8 at p B-13
frost on upper wing surface, s 12.1.7 at p B-11
frost on wing underside. See frost on lower wing surface
frost on wing underside.

frost point and dewpoint table, s 12.1.7.2 at p B-11
frost point higher than dewpoint, s 12.1.7.2 at p B-11
frost point v dewpoint, s 12.1.7.2 at p B-11
frost roughness, s 12.1.7 at p B-11
frost, active – definition, s 12.1.7.1 at p B-11
frost, active – guidance (TC), s 12.1.7.1 to 12.7.1.9 at pp B-11 to B-13
frost, deicing in active, s 12.1.7.6 at p B-12
frost. See also HOT, frost
frozen contamination, removal of – with brooms – mandatory tactile check (TC), s 10.12.1 at p B-4
frozen contamination, removal of – with brooms, s 10.12.1 at p B-4

105 Negative buffer. The Transport Canada Holdover Time Guidelines Winter 2015-2016 allowed for a negative buffer of 3°C in the first step of a two-step application procedure (Table 9 at p 63, Table 10 at p 64). The 2016-2017 version only allows for a 0°C buffer (Tables 9–11U at pp 69–71). This appeared inconsistent with sub-paragraph 10.13.3 on p 7 which refers to the negative buffer of Tables 9, 10, 11-H and 11-U. The problem was resolved in the 2017-2018 HOT Guidelines where sub-paragraph 10.13.3 was modified and no longer allows for negative buffer.

106 FAA uses the expression “lower wing surface”, Transport Canada “wing underside”.

159
frozen contamination, removal of – with hot water, Tables 45–48
hail, small – equivalent to ice pellets, s 11.1.16 (c)9), Tables 38–39
hangar, fluid application in – T-tail aircraft, s 10.11.1 at p B-4
hangar, fluid application in, ss 10.11.1.10.11.1.1 at p B-4
haze. See snowfall intensity overestimation due to obscuration
hoarfrost on fuselage, s 12.1.7 at p B-11
hoarfrost. See also frost
HOT – decision making criterion (TC), s 11.1.5 at pp B-6, B-7
HOT – FAA/TC harmonization initiative, p 5
HOT – weather conditions, in improving, s 11.1.5 at p B-6
HOT – weather conditions, in worsening, s 11.1.5 at p B-6
HOT guidance (TC) entire Transport Canada Holdover Time Guidelines document
HOT v allowance time, s 11.1.5 at p B-8
hot water. See frozen contamination, removal of – with hot water
HOT, 76% adjusted – flaps and slats deployed, pp 6, s 12.3 at p B-14, Tables ADJ-1 to ADJ-38
HOT, frost – guidance (TC), ss 12.1.7 to 12.7.1.9 at pp B-11 to B-13
HOT, frost, Table 1
HOT, no – freezing rain, heavy, s 11.1.8 at p B-7
HOT, no – freezing rain, moderate, s 11.1.8 at p B-7
HOT, no – hail, s 11.1.8 at p B-7
HOT, no – hail, small – but see allowance time
HOT, no – ice pellets – but see allowance time
HOT, no – snow heavy, s 11.1.8 at p B-7
HOT, TC – changes for winter 2017-2018, pp 5–6
HOT, TC – mandatory use of TC application tables, p 6, s 10.4 at pp B-2, B-3
HOT, TC, Title at p 1
HOT, Type I – aluminum surface, s 11.1.12 at p B-7, Table 2
HOT, Type I – aluminum v composite surface – how to select, s 11.1.12 at p B-7
HOT, Type I – composite surface, s 11.1.12 at p B-7, Table 3
HOT, Type II fluid-specific, Tables 5–15, Tables C-1 and C-2
HOT, Type II generic – HOT minimum (worst case) values of all Type II, s 11.1.1 at pp B-5, B-6
HOT, Type II generic – use fluid-specific LOWV, s 11.1.1 at pp B-5, B-6
HOT, Type II generic, Table 4
HOT, Type II/III/IV non-standard dilutions, s 11.1.14 at p B-8
HOT, Type III fluid-specific, Tables 16–19
HOT, Type III generic – not issued107
HOT, Type IV fluid-specific, Tables 21–37, Tables C-1 and C-2
HOT, Type IV generic – HOT minimum (worst case) values of all Type IV fluids, s 11.1.1 at pp B-5, B-6
HOT, Type IV generic – use fluid-specific LOWV, s 11.1.1 at pp B-5, B-6
HOT, Type IV generic, Table 4
ice crystals. See also dry snow
ice detection system, ground. See ROGIDS
ice pellets – equivalent to small hail, s 11.1.6 (c)9) at p B-10, Tables 38–39
inspection, tactile. See check, tactile
laboratories, testing – Anti-icing Materials International Laboratory (AMIL), s 8.1.4.1 at p B-2, p C-2
laboratories, testing – APS Aviation, s 8.1.1.1 at p B-2, p C-2
laboratories, testing – Scientific Material International (SMI), s 8.1.1.1 at p B-2, p C-2
list of fluids (TC), p 10, Tables 41–44
LOUT – definition, Caution and Notes For Tables 41, 42, 43, 44 note 3 at p 58

107 Transport Canada Holdover Time Guidelines Winter 2015-2016 spelled out clearly that there was no Type III generic HOT guidelines. There is no Type III generic HOT guideline in the 2017-2018 version but it is not specified as such.
LOUT table (TC), Tables 41–44
LOWV – definition, s 18 at p B-14
LOWV – for Type II generic HOT, s 11.1.1 at p B-4
LOWV – for Type IV generic HOT, s 11.1.1 at p B-4
LOWV table (TC), Tables 42–44
METAR code GS – use of ice pellet and small hail allowance time outside Canada, s 12.1.10 at pp B13, B-14
METAR code GS – use of snow HOT in Canada, s 12.1.10 at pp B13, B-14
METAR code GS guidance (TC), s 12.1.10 at pp B13, B-14
METAR code GS means small hail or snow pellets outside Canada, s 12.1.10 at pp B13, B-14
METAR code GS means snow pellets in Canada, s 12.1.10 at pp B13, B-14
METAR code GS, interpretation of, s 12.1.10 at pp B13, B-14
METAR code SHGS means small hail in Canada, s 12.1.10 at pp B13, B-14
METAR code GS means snow pellets in Canada, s 12.1.10 at pp B13, B-14
METAR code GS means small hail or snow pellets outside Canada, s 12.1.10 at pp B13, B-14
METAR code GS means small hail in Canada, s 12.1.10 at pp B13, B-14
METAR code GS means snow pellets in Canada, s 12.1.10 at pp B13, B-14
METAR code GS, interpretation of, s 12.1.10 at pp B13, B-14
METAR code SHGS means small hail in Canada, s 12.1.10 at pp B13, B-14
moss. See snowfall intensity overestimation due to obscuration
MOWV – definition, s 18 at p B-14
non-glycol based Type I – TC guidance, s 10.8.1 at p B-3
obscuration. See snowfall intensity overestimation due to obscuration
pretakeoff contamination inspection (TC) – ice pellet and small hail, of no value in, s 11.1.6 (a) at p B-8
pretakeoff contamination inspection (TC) – ice pellet and small hail, not required in, s 11.1.6 (c) 6) at p B-9
pretakeoff inspection (TC) – winglet devices, s 11.2.3.5 a) at p B-10
ROGIDS – guidance (TC), s 10.13.5 at p B-4
runway visual range – do not use with snowfall visibility table, s 11.1.4.1 at p B-6
Scientific Material International (SMI), s 8.1.4.1 at p B-2
smoke. See snowfall intensity overestimation due to obscuration
snowfall intensity as a function of prevailing visibility table. See snowfall visibility table
snowfall intensity overestimation due to obscuration – dust, s 11.1.4.1 at p B-6
snowfall intensity overestimation due to obscuration – fog, s 11.1.4.1 at p B-6
snowfall intensity overestimation due to obscuration – freezing fog, s 11.1.4.1 at p B-6
snowfall intensity overestimation due to obscuration – haze, s 11.1.4.1 at p B-6
snowfall intensity overestimation due to obscuration – mist, s 11.1.4.1 at p B-6
snowfall intensity overestimation due to obscuration – smoke, s 11.1.4.1 at p B-6
snowfall intensity overestimation due to obscuration – snowfall, s 11.1.4.1 at p B-6
snowfall visibility table – guidance (TC), s 11.1.4.1 at pp B-5 to B-7
snowfall visibility table (TC), Table 40
testing laboratories – Anti-icing Materials International Laboratory (AMIL), s 8.1.1.1 at p B-2, p C-2
testing laboratories – APS Aviation, s 8.1.1.1 at p B-2, p C-2
testing laboratories – Scientific Material International (SMI), s 8.1.1.1 at p B-2, p C-2
tree minute rule, s 10.4.2 at p B-3, Tables 45–48
TP 10452E, changes to, pp B-2 to B-14
Type I alkali organic salt based fluid – effect on Type II/III/IV – TC Guidance, s 10.8.1 at p B-3
Type I Non-glycol based fluid – effect on Type II/III/IV – TC Guidance, s 10.8.1 at p B-3
Type I/II/III/IV, use of – TC criterion – certificate of conformance, s 11.1.9 at B-7
Type I/II/III/IV, use of – TC criterion – conformance to AMS1424 and AMS1428, s 11.1.9 at B-7
Type I/II/III/IV, use of – TC criterion – independent laboratory confirmation of conformance, s 11.1.9 at B-7
viscosity measurement method – precedence of fluid manufacturer method over AS9968, Caution and Notes
for Tables 41, 42, 43, 44 note 8 at p 58
viscosity measurement method, fluid manufacturer, Caution and Notes for Tables 41, 42, 43, 44 note 8 at p 58
visibility obscuration. See snowfall intensity overestimation due to obscuration
visibility, flightcrew observed, s 11.1.4.1 at pp B-5, B-6
visibility, METAR, s 11.1.4.1 at pp B-5, B-6
visibility, METAR/SPECI, s 11.1.4.1 at pp B-5, B-6
visibility, prevailing, s 11.1.4.1 at pp B-5, B-6
visibility, reported, s 11.1.4.1 at pp B-5, B-6
visibility, runway visual range, s 11.1.4.1 at pp B-5, B-6
visibility, RVR, s 11.1.4.1 at p B-6

161
wingtip devices – Boeing B737, s 11.2.3.5 at p B-10
wingtip devices – Boeing B747, s 11.2.3.5 at p B-10
wingtip devices – Boeing B757, s 11.2.3.5 at p B-10
wingtip devices – Boeing B767, s 11.2.3.5 at p B-10
wingtip devices – Boeing MD11, s 11.2.3.5 at p B-10
wingtip devices – raked wingtips, s 11.2.3.5 at p B-10
wingtip devices – scimitar, s 11.2.3.5 at p B-10
wingtip devices – scimitar, split – representative surface, use of – TC, s 11.2.3.5 at p B-10
wingtip devices – scimitar, split, s 11.2.3.5 at p B-10
wingtip devices – sharklets, s 11.2.3.5 at p B-10
wingtip devices – strakes, s 11.2.3.5 at p B-10
wingtip devices – winglets, s 11.2.3.5 at p B-10

Transport Canada Holdover Time (HOT) Guidelines Regression Information Winter 2017-2018, Original Issue: August 9, 2017

Issued 2017-08-09 by Transport Canada.

This document, updated every year, provides the regression coefficients to calculate holdover times under various weather conditions.

Typically, real-time weather data is fed to a holdover time determination system (HOTDS) which uses the real time weather data and best-fit power law curves with the appropriate regression coefficients to calculate holdover times.

A similar document is issued by the FAA.

Keywords:
HOT regression information – changes in 2017-2018, pp 4–5
HOT regression limitations – caution outside precipitation rate limits, p 8
HOT regression limitations – no allowance times, p 8
HOT regression limitations – no interpolation for Type II, III, IV non-standard dilutions, p 7
HOT regression limitations – no regression coefficients for frost, p 8
HOT regression limitations – use at > 0°C, p 7
HOT regression limitations – use of LUPR, pp 7–8
HOT regression limitations – use of snow precipitation rate ≤ 50g/dm²/h, p 8
HOT regression limitations – use with HOTDS conforming to regulations (TC), p 6
HOT regression limitations, p 7–8
HOT, 76% adjusted – regression calculations, pp 5–6
HOT, Type I generic – regression calculations, p 6
HOT, Type I generic – regression coefficients, Tables 1-1, 1-2
HOT, Type II – regression grandfathered data obsolete, p 4
HOT, Type II fluid specific – regression calculations, p 6
HOT, Type II fluid specific – regression coefficients, Tables 2-1 to 2-11
HOT, Type II generic – HOT minimum (worst case) values of all Type II, p 7
HOT, Type II generic – regression calculations, pp 6–7
HOT, Type II generic – regression coefficients, Table 2-12
HOT, Type III fluid specific – regression calculations, p 6
HOT, Type III fluid specific – regression coefficients, Tables 3-1 to 3-4
HOT, Type IV fluid specific – regression calculations, pp 6–7
HOT, Type IV fluid specific – regression coefficients, Tables 4-1 to 4-17
HOT, Type IV generic – HOT minimum (worst case) values of all Type IV, p 7
HOT, Type IV generic – regression calculations, pp 6–7
HOT, Type IV generic – regression coefficients, Table 4-18
HOTDS, pp 6–8
HUPR, snow, p 7, Table 6
LUPR, snow, p 7, Table 5
regression coefficient tables, interpretation of, p 6
regression coefficients – best fit power law, p 7

Transport Canada Advisory Circular AC 700-030 Electronic Holdover Time (eHOT) Applications

Issued 2014-11-18 by Transport Canada.

This document provides guidance regarding 1) the implementation and use of eHOT applications in electronic flight bags, 2) the process to obtain authorization from Transport Canada to incorporate eHOT in deicing and anti-icing programs and 3) recommendations to principal operations inspectors and civil aviation safety inspectors when reviewing submission for incorporation of eHOT apps.

Keywords:
definition – EFB, s 3.0 (1)
EFB – definition, s 3.0 (1)
eHOT app – acceptance process (TC), s 5.0
eHOT app – authorization (TC), 6.0
eHOT app – definition, s 3.0 (1)
eHOT app – demonstration of equivalence or superiority to HOT paper version, s 6.0 (2)
eHOT app – guidance (TC), ss 1.1, 4.0,
eHOT app – MOPS (TC), Appendix A
eHOT app – testing and evaluation requirements (TC), Appendix B
eHOT app – training, s 4.0 (6)
eHOT app types – dynamic interactive – HOTDS input, ss 3.0 (4), 4.0 (1) (c)
eHOT app types – dynamic interactive – manual input, ss 3.0 (4), 4.0 (1) (b)
eHOT app types – fixed presentation, ss 3.0 (3), 4.0 (1) (a)
eHOT app, Title at p 1
training – eHOT app, s 4.0 (6)

Revised 2005-04 by Transport Canada.
This document provides guidance to those who are involved in aircraft ground deicing. It is meant to be used in conjunction with the Transport Canada *Holdover Time Guidelines* which are issued every year. Even though TP 14052E itself has not be reissued since April 2005, some of its sections have revised and those revision are found in the current version of the Transport Canada *Holdover Time Guidelines*.

Keywords:

- ADF general description, s 8.1.2
- aerodynamic acceptance test – definition, s 18
- aerodynamic effect of asymmetrical contamination, s 12.6.8
- aerodynamic effect of contamination – guidance (TC), s 12.6.8
- aerodynamic effect of contamination. *See also* frozen contamination – effect on
- aerodynamic effect of leading edge roughness, s 12.6.8
- aerodynamic effect of roughness, s 12.6.8
- air heaters. *See* frozen contamination, removal of – with air heaters
- air operator (TC) – definition, s 18
- air operator certificate (TC) – definition, s 18
- aircraft deicing configuration. *See* configuration, aircraft deicing
- AMS1424 – TC recognized, s 8.1.3
- AMS1428 – TC recognized, s 8.1.3
- anti-icing – definition, ss 8.1.1, 18
- apron – definition, s 18
- APU fluid ingestion, ss 12.4, 12.6.11
- APU glycol ingestion, ss 12.4, 12.6.11
- biodegradation, effects of, s 13.5.1
- Brix, s 8.1.6.1 c)
- brooms. *See* frozen contamination, removal of – with brooms
- brushes. *See* frozen contamination, removal of – with brushes
- cabin windows. *See* windows, cabin
- Canada Labour Code – mandatory compliance, ss 6, 6.1
- Canadian Aviation Regulations, list of, s 1.4
- CDF – definition, s 18
- CDF approval (TC), ss 14.2, 14.2.2.2
- CDF program (TC), s 14.2.3
- CDF requirements (TC), s 14.2.2
- CEPA guidelines, s 13.2.1
- check, tactile – clear ice detection, s 11.2.3.4
- check, tactile – symmetrical, s 11.2.3.4
- check, tactile – tactile wand, with, s 11.2.3.4
- clean aircraft concept – definition, s 18
- clear ice – definition, s 18
- clear ice, difficulty to detect, s 12.1.8.1
- clear ice, effect of, s 1.3
- clear ice, formation of, s 12.1.8.1
- cold soaking – definition, s 18

108 Here we index TP 14052E, not the revisions thereof. Its revised sections are indexed as part of the Transport Canada *Holdover Time Guidelines*. The revisions of TP 14052E are extensive. Users should incorporate the revisions before attempting to rely on TP 14052E.
cold soaking, s 1.3
collision with aircraft, deicing unit, s 12.6.11
communication methodology, s 7.3
communication plan, s 7.1
communication procedure, s 7.5
communication responsibilities, s 7.4
communication training, s 7.8
communication training, ss 7.8–7.9
communications – flightcrew/cabin crew, s 7.12
communications – service provider responsibilities, s 7.10
communications from passengers, s 7.11
communications, DDF, ss 7.6–7.8
configuration, aircraft deicing, s 12.3
contamination – definition, s 18
control, aircraft lateral, s 12.6.8
controllability, aircraft lateral – contamination effect on, s 12.6.7
critical surface – definition, s 18
critical surface inspection (TC) – definition, s 18
DDF – communications with flightcrew, ss 12.6.1–12.6.6, 12.6.11
DDF – emergency at, s 15
DDF – emergency. See also emergency
definition – aerodynamic acceptance test, s 18
definition – air operator (TC), s 18
definition – air operator certificate (TC), s 18
definition – anti-icing, ss 8.1.1, 18
definition – apron, s 18
definition – CDF, s 18
definition – clean aircraft concept, s 18
definition – clean ice, s 18
definition – cold soaking, s 18
definition – contamination, s 18
definition – critical surface inspection (TC), s 18
definition – critical surface, s 18
definition – defrosting, s 18
definition – deicing facility, s 18
definition – deicing pad, s 18
definition – deicing, ss 8.1.1, 18
definition – endurance time, s 18
definition – flight time, s 18
definition – fluid failure, s 18
definition – forced air, s 18
definition – freezing point buffer, s 8.1.6.1 c)
definition – freezing point, s 18
definition – freezing rain, s 18
definition – ground icing conditions, s 18
definition – ground icing operations program (TC), s 18
definition – hail, s 18
definition – HHET, s 18
definition – hoarfrost, s 18
definition – HOT guidelines, s 18
definition – HOT, s 18
definition – ice house, s 18
definition – ice pellets, s 18
definition – ice, s 18
definition – infrared heat deicing method, s 18
definition – inspection, tactile (TC), s 18
definition – maneuvering area, s 18
definition – operations bulletins, s 18
definition – pilot-in-command, s 18
definition – precipitation rate, s 18
definition – pretakeoff contamination inspection (TC), s 18
definition – representative surface, s 18
definition – service provider, s 18
definition – snow grains, s 18
definition – snow pellets, s 18
definition – specimen sheet (training), s 18
definition – staging bay, s 18
definition – taxiway, s 18
definition – terminal deicing facility, s 18
definition – WSET, s 18
defrosting – definition, s 18
deicing – definition, ss 8.1.1, 18
deicing configuration. See configuration, aircraft deicing
deicing facility – definition, s 18
deicing pad – definition, s 18
deicing program – TC approved, s 8.1.5
deicing unit – inspection – after maintenance, s 8.1.6.6 h)
deicing unit – inspection – after modification, s 8.1.6.6 h)
deicing unit – inspection – annual, s 8.1.6.6 h)
deicing unit – inspection – hoses, s 8.1.6.6 h)
deicing unit – inspection – nozzles, s 8.1.6.6 h)
deicing unit – inspection – pumps, s 8.1.6.6 h)
deicing unit collision with aircraft, s 12.6.11
due diligence, principle of, s 16
effluent collection, s 13.6
effluent containment, s 13.6
effluent disposal, s 13.6
emergency – bomb threat, s 15.13
emergency – communications, s 15.3
emergency – co-ordination, s 15.4
emergency – exercises, s 15.6
emergency – fire, aircraft, s 15.11
emergency – fire, deicing facility, s 15.12
emergency – fire, ground equipment, s 15.16
emergency – first response, equipment for, s 15.7
emergency – hijacking, s 15.14
emergency – medical, s 15.15
emergency – service provider role, ss 15.2, 15.8
emergency – spill, fluid, s 15.9
emergency – spill, jet fuel, s 15.10
emergency exits, aircraft, s 12.2.2
emergency, s 15
donurance time – definition, s 18
engines, aft-mounted – effect of clear ice, s 1.3
engines-on deicing, s 10.13.6
eye protection, s 6.1.2.2
face protection, s 6.1.2.2
fall protection systems, s 6.1.2.2
first aid, s 6.1.2.8
first response, s 15.7
flaps and slats deployed – guidance (TC), ss 12.3, 12.6.8
flaps. See flaps and slats
flight time – definition, s 18
fluid dry-out. See Type II/III/IV residue; Type II/IV residue
fluid environmental impact, s 13
fluid failure – definition, s 18
fluid manufacturer documentation – acceptance field tests, s 8.1.6.6 a)
fluid manufacturer documentation – aerodynamic acceptance data, s 8.1.6.6 a)
fluid manufacturer documentation – certificate of conformance, s 8.1.3
fluid manufacturer documentation – color, s 8.1.6.6 a)
fluid manufacturer documentation – concentration limits, s 8.1.6.3
fluid manufacturer documentation – filter requirements, s 8.1.6.6 d)
fluid manufacturer documentation – flash point, s 8.1.6.3
fluid manufacturer documentation – fluid application, s 8.1.5
fluid manufacturer documentation – fluid storage requirements, s 8.1.6.6
fluid manufacturer documentation – fluid temperature limits, s 8.1.6.6 e)
fluid manufacturer documentation – fluid transfer system requirements, ss 8.1.6.6 a), 8.1.6.6 d)
fluid manufacturer documentation – fluid, heating of, s 8.1.6.6 e)
fluid manufacturer documentation – forbidden mixtures, s 8.1.6.6 c)
fluid manufacturer documentation – freezing point data, s 8.1.6.3
fluid manufacturer documentation – freezing point v dilution data, s 8.1.6.1 c)
fluid manufacturer documentation – hardness, maximum water, s 8.1.6.3
fluid manufacturer documentation – label test, s 8.1.6.6 a)
fluid manufacturer documentation – label, s 8.1.6.6 a)
fluid manufacturer documentation – materials compatibility data, s 8.1.6.6
fluid manufacturer documentation – pH limits, ss 8.1.6.3 a), 8.1.6.6 e)
fluid manufacturer documentation – product information bulletin, s 8.1.7.1
fluid manufacturer documentation – pump requirements, s 8.1.6.6 d)
fluid manufacturer documentation – refractive index limits, ss 8.1.6.1 b), 8.1.6.1 c), 8.1.6.6 e)
fluid manufacturer documentation – refractometer, use of, s 8.1.6.1 b)
fluid manufacturer documentation – safety data sheet, ss 8.1.7.1, 8.1.8
fluid manufacturer documentation – sampling guidelines, ss 8.1.6.6 a), 8.1.6.6 f)
fluid manufacturer documentation – shelf life, s 8.1.6.6 f)
fluid manufacturer documentation – specific gravity, s 8.1.6.3
fluid manufacturer documentation – specification, fluid, s 8.1.6.6 f)
fluid manufacturer documentation – storage tank requirements, ss 8.1.6.6 a), 8.1.6.6 d)
fluid manufacturer documentation – surface tension, s 8.1.6.3
fluid manufacturer documentation – suspended matter limit, s 8.1.6.6 a)
fluid manufacturer documentation – Type I/II/III/IV certificate of conformance, s 8.1.3
fluid manufacturer documentation – UV light, effect of, s 8.1.6.6 a)
fluid manufacturer documentation – viscosity limits, ss 8.1.6.3, 8.1.6.6 a)
fluid manufacturer documentation – viscosity method, field, s 8.1.6.6 a)
fluid manufacturer documentation – visual check test, s 8.1.6.3
fluid manufacturer documentation – water hardness requirements, s 8.1.6.2 b)
fluid shelf life, s 8.1.6.6 f)
fluid slipperiness, s 8.1.6.6 g)
fluid specifications, ISO – TC recognized, not, s 8.1.3
fluid specifications, SAE – TC recognized, s 8.1.3
fluid spills – emergency contact in Canada: CANUTEC, s 8.1.10
fluid test frequency – bulk storage, s 8.1.6.6 a)
fluid test frequency – deicing unit after maintenance, s 8.1.6.6 h)
fluid test frequency – deicing unit after repair, s 8.1.6.6 h)
fluid test frequency – deicing unit daily and when refilled, s 8.1.6.6 a)
fluid test frequency – drums, s 8.1.6.6 a)
fluid test frequency – totes, s 8.1.6.6 a)
fluid test frequency – upon dilution, s 8.1.6.6 a)
fluid test frequency – upon transfer, s 8.1.6.6 a)
fluid, composition of, s 8.1.2
fluids – guidance (TC), s 8
footwear, s 6.1.2.2
forced air – definition, s 18
forced air, s 10.13.4
freezing drizzle – guidance (TC), s 12.1
freezing point – definition, s 18
freezing point buffer – definition, s 8.1.6.1 c)
freezing point buffer – origin, s 8.1.6.1 c)
freezing point buffer, reasons for – absorption of precipitation, s 8.1.6.1 c)
freezing point buffer, reasons for – difference between OAT and aircraft surface temperature, s 8.1.6.1 c)
freezing point buffer, reasons for – fluid application variation, s 8.1.6.1 c)
freezing point buffer, reasons for – OAT changes after fluid application, s 8.1.6.1 c)
freezing point buffer, reasons for – refractometer measurement variability109, 8.1.6.1 c)
freezing point buffer, reasons for – weather changes after fluid application, s 8.1.6.1 c)
freezing point depression, description of, s 8.1.6.1 a)
freezing point determination – ASTM D 1177, s 8.1.6.1 a)
freezing point determination – first ice crystal formation, s 8.1.6.1 a)
freezing point determination – refraction, s 8.1.6.1 b)
freezing point measurement. See freezing point determination
freezing rain – definition, s 18
freezing rain, operations in – guidance (TC), s 12.1.1
freezing rain, safety considerations – guidance (TC), s 12.1.1
frost polishing – unacceptable method, s 10.12.4
frozen contamination – effect on drag, s 12.6.7
frozen contamination – effect on lateral controllability, s 12.6.7
frozen contamination – effect on lift, asymmetrical, s 12.6.7
frozen contamination – effect on lift, s 12.6.7
frozen contamination – effect on propeller balance, s 12.6.7
frozen contamination – effect on propeller efficiency, s 12.6.7
frozen contamination – effect on stall angle, s 12.6.7
frozen contamination – effect on stall pusher system, s 12.6.7
frozen contamination – effect on stall speed, s 12.6.7
frozen contamination – effect on stall warning system, s 12.6.7
frozen contamination, removal of – by manual means, s 10.12
frozen contamination, removal of – with air heaters, s 10.12.5
frozen contamination, removal of – with brooms, s 10.12
frozen contamination, removal of – with brushes, s 10.12
frozen contamination, removal of – with ropes, s 10.12
frozen contamination, removal of – with scrapers, s 10.12
glycol discharge guidelines (Canada), s 13.2.1

109 Refractometer measurement error can be introduced, for instance, by the imperfect temperature compensation of analog temperature-compensated refractometers.
glycol management, s 13.7
glycol mitigation, s 13.7
ground ice detection system – definition, s 18
ground icing conditions – definition, s 18
ground icing program, approved (TC), ss 2.1, 3.1
hail – definition s 18
hangar, use of s 10.2.1
harness, s 6.1.2.2
hazards of ice, snow and frost ss 1.3, 12.6.8
hazards of ice, snow and frost. See also frozen contamination – effect on
headsets, s 6.1.2.2
headwear, protective, s 6.1.2.2
heat loss, s 10.6.2.3
helicopter. See rotorcraft
HHET – definition, s 18
hoarfrost – definition, s 18
HOT – definition, s 18
HOT guidance (TC), s 11
HOT guideline – definition, s 18
HOT, start of, s 12.6.10
ice – definition, s 18
ice house – definition, s 18
ice pellets – definition, s 18
infrared heat deicing method – definition, s 18
infrared heat systems, s 10.13.1
injury to deicing operator, s 12.6.11
inspection, tactile (TC) – definition, s 18
leading edge devices. See flaps and slats
LOUD – calculation examples, s 8.1.6.1 c)
maneuvering area – definition, s 18
masks, s 6.1.2.2
message boards, s 7.13
occupational health and safety (Canada), s 6.1
operations bulletins – definition, s 18
passenger briefing, pre-deicing – TC regulation, s 12.6.9
personal protective equipment, s 6.1.2.6
pilot-in-command – definition, s 18
pilot-in-command – duties, s 12.6
polishing frost – unacceptable method, s 10.12.4
precipitation rate – definition, s 18
pretakeoff contamination inspection (TC) – definition, s 18
pretakeoff contamination inspection (TC) – from inside, 11.2.4
pretakeoff contamination inspection (TC) – from outside
pretakeoff contamination inspection (TC) – not with Type I, s 11.2.1
pretakeoff contamination inspection (TC) – not with Type II/III/IV with HOT < 20 minutes, s 11.2.4.1
pretakeoff contamination inspection (TC) – with approved ground icing program, s 11.2.4
pretakeoff contamination inspection (TC) – within 5 minutes of takeoff ground roll, s 11.2.4.1
pretakeoff contamination inspection (TC), s 11.2.4

110 The note in s 11.2.4 states that the “pre-take-off contamination [inspection] must be conducted from outside if the aircraft if the Air Operator does not use the HOT guidelines”, yet s 11.4.2 says the “procedure should only be applied to Type II, III and IV anti-icing fluids and then only when the pertinent minimum holdover time exceeds 20 minutes.” If the air operator does not use HOT guidelines, how is the pilot to know what the holdover time is?
propeller balance, effect of contamination on, s 12.6.7
propeller efficiency, effect of contamination on, s 12.6.7
quality assurance system (TC), s 4
rain on cold soaked wing – clear ice, difficulty to detect, s 12.1.8.1
record keeping (TC) – minimum records, s 4.2.1
record keeping (TC) – audit dates, results and actions, s 4.2.1
record keeping (TC) – equipment log sheets, s 4.2.1
record keeping (TC) – field test results, ss 4.2.1, 4.2.3.2, 4.2.3.3
record keeping (TC) – fluid acceptance records, ss 4.2.1, 4.2.3
record keeping (TC) – fluid application records, s 4.2.2
record keeping (TC) – glycol mitigation plan, s 4.2.1
record keeping (TC) – refractometer calibration, ss 4.2.1, 4.2.3.5
record keeping (TC) – retention time, ss 4.2.3.1–4.2.3.5
record keeping (TC) – test frequency, s 4.2.1
record keeping (TC) – training records, s 4.2.1
record keeping (TC), s 4
refractometer calibration, ss 4.2.1 g), 4.2.3.5, 8.1.6.1
refractometers, s 8.1.6.1
regulations, Canada – guidance (TC), s 12.8
representative surface – approval (TC), ss 11.2.5.1, 11.2.5.3
representative surface – definition, s 18
representative surface – purpose, s 11.2.5.2
representative surface – use of (TC), s 11.2.5.4
respiratory protection, s 6.1.2.2
ropes. See frozen contamination, removal of – with ropes
rotorcraft – effect of contamination – decrease in main rotor thrust, s 12.7.2
rotorcraft – effect of contamination – decrease in tail rotor thrust, s 12.7.2
rotorcraft – effect of contamination – handling and control issues, s 12.7.2
rotorcraft – effect of contamination, s 12.7.2
rotorcraft – effect of deicing fluid, s 12.7.4
rotorcraft – methods to remove contamination, s 12.7.5
rotorcraft – clean aircraft concept, s 12.7.1
rotorcraft issues, s 12.7
roughness, effect of, s 12.6.8
safety – accident investigation, s 6.1.2.7
safety – aircraft movement, s 6.2.6
safety – deicing unit movement, s 6.2.7
safety – employee, role of (Canada), s 6.1.1
safety – employer, role of (Canada), s 6.1.2
safety – engine inlet, s 6.2.2
safety – first aid, s 6.1.2.8
safety – hazardous substances, s 6.1.2.3
safety – jet blast, s 6.2.1
safety – job analysis, s 6.1.2.5
safety – personal protective equipment, s 6.1.2.2
safety – personnel, s 6
safety – procedures, s 6.2.8
safety – safety zones, s 6.2.3
safety – slipperiness, s 6.2.4
safety – visibility, s 6.2.5
safety – weather, s 6.2.5
safety – wind, s 6.2.5
safety – workplace inspections, s 6.1.2.6
safety data sheet requirements (Canada), s 8.1.8
scrapers. See frozen contamination, removal of – with scrapers
service provider – definition, s 18
slats. See flaps and slats
slush – definition, s 18
SMS (TC), s 4
snow – guidance (TC), s 12.1.3
snow grains – definition, s 18
snow pellets – definition, s 18
snow, blowing – effect on aerodynamically quiet areas, s 12.1.4
specimen sheet (training) – definition, s 18
spray pattern, s 10.6.1
spray pressure, s 10.6.1
staging bay – definition s 18
stall, frozen contamination effect on. See frozen contamination – effect on stall
storage tank corrosion, s 8.1.6.6 h)
storage tank inspection, s 8.1.6.6 h)
tactile pole, s 11.2.3.4
tactile wand, s 11.2.3.4
taxiway – definition, s 18
terminal deicing facility – definition, s 18
training – TC, s 5
Type I coverage, s 10.6.2.1
Type I degradation – chemical contamination – corrosion in storage vessel, s 8.1.6 c)
Type I degradation – chemical contamination – galvanic corrosion in storage vessel, s 8.1.6 c)
Type I degradation – chemical contamination – leaky tank covers, s 8.1.6 c)
Type I degradation – chemical contamination – mislabeled equipment, s 8.1.6 c)
Type I degradation – chemical contamination – unlabeled equipment, s 8.1.6 c)
Type I degradation – chemical contamination – using undedicated equipment, s 8.1.6 c)
Type I degradation – exposure to UV light, s 8.1.6.6 c)
Type I degradation – heating – oxidation, s 8.1.6 e)
Type I degradation – heating – water loss, s 8.1.6 e)
Type I heating issues – application temperature, s 8.1.6.6 d)
Type I heating issues – evaporation, s 8.1.6.6 d)
Type I heating issues – shelf life, s 8.1.6.6 f)
Type I heating issues – standby heating, s 8.1.6.6 d)
Type I heating issues – thermal degradation, s 8.1.6.6 d)
Type I heating issues – water loss, s 8.1.6.6 d)
Type I, unheated, s 12.5
Type II/III/IV coverage, s 10.6.2.2
Type II/III/IV degradation – chemical contamination – corrosion in storage vessel, s 8.1.6 c)
Type II/III/IV degradation – chemical contamination – galvanic corrosion in storage vessel, s 8.1.6 c)
Type II/III/IV degradation – chemical contamination – leaky tank covers, s 8.1.6 c)
Type II/III/IV degradation – chemical contamination – mislabeled equipment, s 8.1.6 c)
Type II/III/IV degradation – chemical contamination – unlabeled equipment, s 8.1.6 c)
Type II/III/IV degradation – chemical contamination – using undedicated equipment, s 8.1.6 c)
Type II/III/IV degradation – excessive shearing – filters, s 8.1.6.6 d)
Type II/III/IV degradation – excessive shearing – nozzles, s 8.1.6.6 h)
Transport Canada Exemption From Sections 1.0, 3.0, 6.0, 6.2 and 7.111 of Standard 622.11 Ground Icing Operations Made Pursuant for Subsection 602.11(4) of the Canadian Aviation Regulations

Issued 2014-02-28 by Transport Canada.

This regulatory exemption authorizes air operators to use HOT generated by HOTDS using best-fit power law equations and regression coefficients as part of their ground icing operations program. The documents sets the minimum standards for use of the HOTDS.

Keywords:
anti-icing fluid – definition, Appendix B
definition – anti-icing fluid, Appendix B
definition – deicing fluid, Appendix B
definition – glycol pan measurement, Appendix B
definition – HOT, Appendix B
Aircraft Deicing Documents – Issued by Transport Canada

definition – HOTDR, Appendix B
definition – HOTDS continuously integrated measurement system, Appendix B
definition – HOTDS discrete measurement system, Appendix B
definition – HOTDS, Appendix B
definition – regression analysis (TC), Appendix B
deicing fluid – definition, Appendix B
glycol pan measurement – definition, appendix B
HOT – definition, Appendix B
HOT regression limitations – annual update, s 5.1.20
HOT regression limitations – capping for freezing drizzle 2 h (TC), s 5.1.19
HOT regression limitations – capping for freezing fog 4 h (TC), 5.1.19
HOT regression limitations – capping for freezing fog 4 h (TC), s 5.1.19
HOT regression limitations – capping for light freezing rain 2 h (TC), s 5.1.19
HOT regression limitations – capping for rain on cold soaked wing 2 h (TC), s 5.1.19
HOT regression limitations – capping for snow 2 h (TC). s 5.1.19
HOT regression limitations – use at > 0°C, s 5.1.21
HOT regression limitations – use of freezing drizzle precipitation rate ≤ 25 g/dm2/h, 5.1.16
HOT regression limitations – use of freezing drizzle precipitation rate ≥ 5 g/dm2/h, 5.1.15
HOT regression limitations – use of freezing fog precipitation rate ≤ 25 g/dm2/h, s 5.1.16
HOT regression limitations – use of freezing rain precipitation rate ≤ 25 g/dm2/h, 5.1.16
HOT regression limitations – use of freezing rain precipitation rate ≥ 5 g/dm2/h, 5.1.15
HOT regression limitations – use of precipitation rate ≥ 2 g/dm2/h, 5.1.11
HOT regression limitations – use of rain on cold soaked wing precipitation rate ≤ 75 g/dm2/h, s 5.1.18
HOT regression limitations – use of regression coefficients equivalent to those published by TC, s 5.1.12.2
HOT regression limitations – use of regression coefficients published by TC, s 5.1.12.1
HOT regression limitations – use of snow precipitation rate ≤ 50 g/dm2/h, s 5.1.17
HOTDR – definition, Appendix B
HOTDR, content of, s 5.1.22
HOTDS – definition, Appendix B
HOTDS continuously integrated measurement system – definition, Appendix B
HOTDS discrete measurement system – definition, Appendix B
HOTDS technical requirements (TC), s 5
regression analysis (TC) – definition, Appendix B

Barry B. Myers, Aircraft Anti-icing Fluid Endurance, Holdover, and Failure Times Under Winter Precipitations Conditions, Transportation Development Centre, Transport Canada, TP 13832, November 2001

This document is a glossary prepared by Mr. Barry Myers, an aerodynamicist and Transportation Development Centre (Transport Canada) subject matter expert on matters related to aircraft ground deicing. Mr. Myers for a long time headed research and development on aircraft ground deicing and anti-icing for Transport Canada.

This document (TP 13832) was his effort to clarify definitions related to the hazards of ice, snow and frost on aircraft surfaces and the use to anti-icing fluids to protect against frozen and freezing
precipitation His glossary is particularly interesting as it differentiates between visual, adhesion and aerodynamic failures.

Keywords:
aerodynamic effect of canard contamination, s 6.3
aerodynamic effect of clear-ice, s 6.2
aerodynamic effect of contamination, s 6
aerodynamic effect of freezing fog, s 6.6
aerodynamic effect of frost, s 6.5
aerodynamic effect of fuselage contamination, s 6.4
aerodynamic effect of tail plane contamination, s 6.3
aerodynamic effect of wing contamination, s 6.1
aerodynamically quiet area – definition, s 6.7
aerodynamically quiet area superset of aerodynamically quiet cavities, s 6.7
aerodynamically quiet area superset of aerodynamically quiet surface, s 6.7
aerodynamically quiet cavity – definition, 6.8
aerodynamically quiet cavity – drainage issues, s 6.8
aerodynamically quiet surface – definition, s 6.9
angle of attack, flow separation at high, s 6.1
angle of attack, flow separation at low, s 6.1
anti-icing – definition, s 5.2
cold soaking – definition, s 6.10
cold soaking – reason for above freezing HOT, s 6.10
contamination superset of anti-icing fluid, s 6.1
contamination superset of bird droppings, s 6.1
contamination superset of dirt, s 6.1
contamination superset of frost, s 6.1
contamination superset of hydraulic oil, s 6.1
contamination superset of ice, s 6.1
contamination superset of minor mechanical damage, s 6.1
contamination superset of minor mechanical damage, s 6.1
contamination superset of paint chipping, s 6.1
contamination superset of rain, s 6.1
contamination superset of snow, s 6.1
contamination superset of squashed bugs, s 6.1
contamination superset of variation in manufacturing tolerance, s 6.1
contamination, asymmetric – in crosswind, s 6.1
contamination, visible – definition, s 5.8
definition – aerodynamically quiet area, s 6.7
definition – aerodynamically quiet cavity, s 6.8
definition – aerodynamically quiet surface, s 6.9
definition – anti-icing, s 5.2
definition – cold soaking, s 6.10
definition – contamination, visible, s 5.8
definition – defrosting, s 5.4
definition – deicing, s 5.1
definition – deicing/anti-icing, s 5.3
definition – endurance time, s 4.2
definition – failure front, s 2.6
definition – failure, adherence, s 2.3
definition – failure, adhesion, s 2.3
definition – failure, entire plate, s 2.12
definition – failure, fifth cross hair, s 2.13
definition – failure, first, s 2.9
definition – failure, full, s 2.12
definition – failure, plate, s 2.11
definition – failure, top edge, s 2.7
definition – failure, total, s 2.12
definition – fluid adhesion, s 2.5
definition – fluid failure front, s 2.6
definition – fluid failure, top edge, s 2.7
definition – fluid, acceptable, s 1.1
definition – fluid, failed, s 2.8
definition – fluid, pristine, s 1.2
definition – holdover time guidelines. See definition – HOT
guidelines
definition – holdover time. See definition – HOT
definition – HOT guidelines, s 4.4
definition – HOT, s 4.3
definition – ice, s 5.5
definition – nucleation site, s 3.3
definition – plate, frosticator, s 3.2
definition – plate, standard test, s 3.1
definition – precipitation rate for HOT tables, s 3.4
definition – precipitation rate, 10 minute average, s 3.6
definition – precipitation rate, 20 minute average, s 3.6
definition – precipitation rate, 40 minute average, s 3.6
definition – precipitation rate, 5 minute average, s 3.6
definition – precipitation rate, peak, s 3.5
definition – protection time, s 4.1
definition – slush, s 5.6
definition – snow, s 5.7
defrosting – definition, s 5.4
deicing – definition, s 5.1
deicing/anti-icing – definition, s 5.3
endurance time – definition, s 4.2
failure front – definition, s 2.6
failure, adherence – definition, s 2.3
failure, adhesion – definition, s 2.3
failure, entire plate – definition, s 2.12
failure, fifth cross hair – definition, s 2.13
failure, first – definition, s 2.9
failure, full – definition, s 2.12
failure, plate – definition, s 2.11
failure, standard plate, s 2.10
failure, top edge – definition, s 2.7
failure, total – definition, s 2.12
first icing event. See failure
flow – laminar v turbulent, s 6.1
fluid adhesion – definition, s 2.5
fluid failure front – definition, s 2.6
fluid failure, top edge – definition, s 2.7
fluid failure, type of – adhesion, ss 2.1, 2.3
fluid failure, type of – visual, ss 2.1, 2.2, 2.10
fluid failure, types of, s 2.1
fluid failure, visual s 1.3
fluid operational limit, s 1.3
fluid, acceptable – definition, s 1.1
fluid, failed – definition, s 2.8
fluid, pristine – definition, s 1.2
freezing fog v frozen fog, s 6.6
frost – deceptively dangerous – clean appearance of residual contaminated fluid, s 6.5
holdover time. See HOT
HOT – definition, s 4.3
HOT guidelines – definition s, 4.4
HOT time less than protection time, s 4.3
ice – definition, s 5.5
lift loss, asymmetric, s 6.1
nucleation site – definition, s 3.3
nucleation site, s 2.4
plate, frosticator – definition, s 3.2
plate, standard test – definition, s 3.1
precipitation rate for HOT tables– definition, s 3.4
precipitation rate, 5 minute average – definition, s 3.6
precipitation rate, 10 minute average – definition, s 3.6
precipitation rate, 20 minute average – definition, s 3.6
precipitation rate, 40 minute average – definition, s 3.6
precipitation rate, peak – definition, s 3.5
protection time – definition, s 4.1
roughness, effect of, s 6.1
slush – definition, s 5.6
slush, formation of, ss 5.6, 5.8
slush, mat of, s 5.8
snow – definition, s 5.7

Issued 2015-12-16 by EASA.

Advisory information explaining the potentially deleterious effects of alkali metal organic salt salts (non-glycol based) as freezing point depressants in the formulation of Type I aircraft deicing fluids. These alkali salt based deicing fluids can have two adverse effects: 1) when used in the first step of a two-step deicing anti-icing, the organic slat based Type I fluid can interfere with the thickener system of Type II/II/IV fluids and reduce expected holdover time, with consequences affecting safety and 2) can facilitate galvanic corrosion of aircraft parts or the catalytic oxidation of aircraft carbon brakes.

Keywords:
- alkali organic salt based Type I fluid – EASA guidance, pp 1–2
- non-glycol based Type I – EASA guidance, pp 1–2
- alkali organic salt based Type I – EASA guidance, pp 1–2
- Type I Non-Glycol based fluid – effect on Type II/III/IV – EASA guidance, pp 1–2
- Type I Non-Glycol based fluid – galvanic corrosion of metal parts – EASA guidance, pp 1–2
- Type I Non-Glycol based fluid – need for maintenance – EASA guidance, pp 1–2
- Type I Non-Glycol based fluid – need for inspections – EASA guidance, pp 1–2

Issued 2017-11-14 by EASA.

Keywords:
- AEA recommendations – publication discontinuation, p 2
- EASA recommendation to use – FAA Holdover time Guidelines, pp 2–3
- EASA recommendation to use – FAA Notice N 8900.xxx FAA-Approved Deicing program Updates, Winter 20xx-20yy, pp 2–3
- EASA recommendation to use – global aircraft deicing standards, p 3
- FAA Holdover Time Guidelines – EASA recommendation to use, pp 2–3
- FAA Notice N 8900.xxx FAA-Approved Deicing program Updates, Winter 20xx-20yy – EASA recommendation to use, pp 2–3
- global aircraft deicing standards, pp 1–3
- global aircraft deicing standards – EASA recommendation to use, p 3
- global aircraft deicing standards, list of, p 1
Guide to Aircraft Ground Deicing – Issue 6

EASA GM1 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: Terminology

Issued 2012-10-25 by EASA.

Guidance Material (GM) issued by EASA consists of three sections labeled GM1, GM2 and GM3 of the Annex to Executive Director Decision ED 2012/018/R: Acceptable Means of compliance (AMC) and Guidance Material (GM) to Part-CAT.

Keywords:
aircraft icing, conditions conducive to, s (c) at p 121
anti-icing code, s (m) at p 122
anti-icing fluid – definition, s (a) at p 121
check, contamination. See contamination check
check, post-treatment (EASA), s (j) at p 122
check, pretakeoff (EASA). gate departure check pretakeoff check (EASA)
check, pretakeoff contamination (EASA). See pretakeoff contamination check (EASA)
clear ice – definition, s (b) at p 121
clear ice, conditions conducive to, s (b) at p 121
contamination – definition, s (d) at p 121
contamination check– definition, s (a) at p 121
definition – anti-icing fluid, s (a) at p 121
definition – clear ice, s (b) at p 121
definition – contamination check, s (a) at p 121
definition – contamination, s (d) at p 121
definition – deicing fluid, s (f) at p 121–122
definition – deicing/anti-icing procedure, s (g) at p 122
definition – GIDS, s (h) at p 122
definition – LOUT, s (i) at p 122
definition – pretakeoff contamination check (EASA), s (l) at p 122
definition – ROGIDS, s (h) at p 122
111 deicing fluid – definition, s (f) at p 121–122
deficing/anti-icing procedure – definition, s (g) at p 122
GIDS – definition, s (h) at p 122
GIDS. See also ROGIDS
ground ice detection system. See also ROGIDS
ground ice detection system. See GIDS
LOUT – definition, s (i) at p 122
pretakeoff check (EASA), s (k) at p 122
pretakeoff contamination check (EASA) – definition, s (l) at p 122
ROGIDS – definition, s (h) at p 122
112 See footnote 111.

111 EASA uses the term GIDS (ground ice detection system), SAE uses the term ROGIDS (remote on-ground ice detection system for what appears to be the same reality.

112 See footnote 111.
EASA GM2 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing Procedures

Issued 2012-10-25 by EASA.

Keywords:
anti-icing code, s (d) at p 125
check, contamination. See contamination check
check, post-treatment (EASA), s (a) at p 123, s (b) at p 124
check, tactile, s (b) at p 124
clear ice, detection of, s (a) at p 123
commander. See pilot-in-command
contamination check, s (a) at p 123, s (b) at p 124
definition – deicing/anti-icing, one-step, s (b) at p 123
definition – deicing/anti-icing, two-step, s (b) at p 123
deicing/anti-icing, one-step – definition, s (b) at p 123
deicing/anti-icing, two-step – definition, s (b) at p 123
fluid application – guidance (EASA), pp 123–126
fluid application – interruption of, s (a) at p 123
fluid application – unsuccessful, s (a) at p 123
fluid manufacturer documentation – fluid application, s h at p 126
fluid manufacturer documentation – fluid testing, s h at p 126
fluid manufacturer documentation – fluid transfer system requirements, s h at p 126
fluid manufacturer documentation – fluid storage requirements, s h at p 126
fluid manufacturer documentation – Type II/III/IV residues, s (h) at p 126
frost on lower wing surface, s (a) at p 123
frozen contamination, removal of – by manual means, s (b) at p 123
frozen contamination, removal of – with forced air, s (b) at p 123
frozen contamination, removal of – with hot water, s (b) at p 123
frozen contamination, removal of – with infrared, s (b) at p 123
HOT guidance (EASA), s (c) at p 125
pilot-in-command – situational awareness, s (8) at p 124
pretakeoff check (EASA), s (a) at p 123
pretakeoff contamination check (EASA), s (a) at p 123
record keeping (EASA) – deicing/anti-icing incidents, s (a) at p 123
three minute rule, s (b) at p 123
training – EASA requirements, ss (f–g) at p 125
Type II/III/IV aircraft operational considerations – aircraft attitude, s (c) at p 124
Type II/III/IV aircraft operational considerations – flightcrew briefing, s (c) at p 124
Type II/III/IV aircraft operational considerations – increased takeoff speed, s (c) at p 124
Type II/III/IV aircraft operational considerations – mass decrease, s (c) at p 124
Type II/III/IV aircraft operational considerations – rotation speed and rate, s (c) at p 124
Type II/III/IV aircraft operational considerations – stick force, s (c) at p 124
Type II/III/IV aircraft operational considerations. See also aerodynamic effect of fluids – performance adjustments
Type II/III/IV residue formation, ss (b) at p 123, (c) at p 124
Type II/III/IV residue, dried, s (h) at p 126
Type II/III/IV residue, effect of – aileron jamming, s (h) at p 126

113 EASA uses “commander”. FAA and Transport Canada tend to use the expression pilot-in-command or captain. Here we use pilot, pilot-in-command or flightcrew, as appropriate. Scripts in section 5.8 pf AS6285 states that pilot-in-command is a synonym of commander.
Type II/III/IV residue, effect of – drain hole clogging, s (h) at p 126
Type II/III/IV residue, effect of – elevator jamming, s (h) at p 126
Type II/III/IV residue, effect of – flap jamming, s (h) at p 126
Type II/III/IV residue, effect of – flight control restrictions, s (h) at p 126
Type II/III/IV residue, effect of – lift reduction, s (h) at p 126
Type II/III/IV residue, effect of – stall speed increase, s (h) at p 126
Type II/III/IV residue, guidance, EASA, s (h) at pp 125–126
Type II/III/IV residue, rehydrated, s (h) at p 126
Type II/III/IV residue, s (h) at pp 125–126
unthickened fluid. See Type I
wing temperature v OAT, s (2) at p 123

EASA GM3 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing Background Information

Issued 25 October 2012 by EASA.

Keywords:
AEA recommendations – EASA recommendation to use114, p 128
fluid effectiveness, loss of. See fluid failure
fluid failure, s (c) at p 128
frozen contamination – effect on APU, s (a) at pp 126–127
frozen contamination – effect on control surfaces, s (a) at pp 126–127
frozen contamination – effect on drag, s (a) at pp 126–127
frozen contamination – effect on engine compressor, s (a) at pp 126–127
frozen contamination – effect on engine stall, s (a) at pp 126–127
frozen contamination – effect on engine, s (a) at pp 126–127
frozen contamination – effect on lift, s (a) at pp 126–127
frozen contamination – effect on propeller performance, s (a) at pp 126–127
hazards of ice, snow and frost, s (a) at pp 126
HOT (EASA) – AEA recommendation, s (a) at p 127, see footnote 114
HOT guidance (EASA), s (c) at p 128, see footnote 114
HOT, end of (EASA) – at fluid failure115, s (c) at p 128
HOT, end of (EASA) – at the beginning of the takeoff roll (fluid shedding), s (c) at p 128
HOT, no (EASA) – freezing precipitation with high water content, s (a) at p 127
HOT, no (EASA) – freezing rain, s (a) at p 127
HOT, no (EASA) – hail, s (a) at p 127
HOT, no (EASA) – heavy snow, s (a) at p 127
HOT, no (EASA) – high wind velocity, s (a) at p 127
HOT, no (EASA) – ice pellets, s (a) at p 127
HOT, start of, s (c) at p 128

114 AEA recommendations are no longer published (as of December 2016). EASA now recommends to use the global aircraft deicing standards and FAA documentation. See EASA Safety Information Bulletin 2017-11.
115 The expression “loss of fluid effectiveness” and “fluid failure” appears to be used interchangeably; however, there is a distinction to be made between visual failure and aerodynamic failure.
Documents Issued by ICAO

ICAO Doc 9640-AN/940 Manual of Aircraft Ground De-icing/Anti-icing Operations

Revised 2000 by ICAO.

Doc 9640-AN/940 provides high level information on aircraft deicing/anti-icing. It summarizes the history of deicing, develops the notion of the clean aircraft concept, informs on deicing fluids, holdover time, on the various deicing checks to be done during deicing operations, distinguishes the responsibilities of the regulators and those of operators, discusses facility design, explains the necessity of air traffic control winter operations plan, summarizes deicing and anti-icing methods, and insists on the need for training and quality assurance. It recommends to maintain information updated and provides web links and bibliography to do such.

Keywords:
aircraft icing, conditions conducive to, ss 1.6, 3.1, 3.2
aircraft manufacturer recommendations, compliance with, Foreword at p iii
anti-icing – definition, p 1
anti-icing code – definition, s 10.3
anti-icing code, ss 5.4, 10.3
ATC winter operations plan – flow through rate, s 9.3
ATC winter operations plan – in controller’s manual, s 9.5
ATC winter operations plan – shortest taxi time, s 9.5
ATC winter operations plan, s 9
check, special (ICAO) – clear ice, s, 6.7
check, special (ICAO) – cold soaking, s, 6.7
check, special (ICAO), ss 6.1, 6.7
clean aircraft concept – definition, s 2.1
clear ice, difficulty to detect, s 6.7
clear ice, p 1, ss 3, 6.7
cold soaked effect – definition, p 1
cold soaking, conditions affecting, s 1.6
critical surface – definition, p 1
definition – anti-icing code, s 10.3
definition – anti-icing, p 1
definition – clean aircraft concept, s 2.1
definition – cold soaked effect, p 1
definition – critical surface, p 1
definition – deicing, p 1
definition – deicing/anti-icing, one-step, p 1
definition – deicing/anti-icing, p 1
definition – deicing/anti-icing, two-step, p 1
definition – drizzle, p 1
definition – fog, ground, p 1
definition – fog, p 1
definition – freezing drizzle, p 1
definition – freezing fog, p 1
definition – freezing rain, p 1
definition – frost, active, p 1
definition – frost, p 1
definition – high humidity, p 2
definition – hoarfrost, p 1
definition – HOT, p 2
definition – moisture, visible, p 2
definition – one-step deicing/anti-icing, p 1
definition – precipitation intensity, p 2
definition – rain, p 2
definition – rime, p 2
definition – shear force, p 2
definition – snow, dry, p 2
definition – snow, p 2
definition – snow, wet, p 2
definition – two-step deicing/anti-icing, p 1
deicing – aircraft configuration, s 10.1
deicing – flightcrew and ground crew communications, s 10.1
deicing facility – aircraft – narrow-body, ss 8.5, 8.9
deicing facility – aircraft – wide-body, ss 8.5, 8.9
deicing facility – crew shelter, s 8.6
deicing facility – design, ss 8.2–8.5
deicing facility – drainage and collection, s 8.4
deicing facility – environmental considerations, ss 8.4, 8.6
deicing facility – ground safety clearance, s 8.9
deicing facility – lighting system, s 8.6
deicing facility – navigational aid clearance, s 8.9
deicing facility – obstacle clearance, s 8.9
deicing facility – pad design, s 8.6
deicing facility – proximity to runway, s 8.5
deicing facility – separation standards, s 8.13
deicing facility – siting, ss 8.7–8.11
deicing facility – spent ADF – recycling, s 8.4
deicing facility – storage, s 8.6
deicing facility – taxi route bypass, ss 8.5, 8.6
deicing facility – taxi routes, s 8.5
deicing facility – taxi time, ss 8.7, 8.8, 8.10, 8.11
deicing facility – throughput demand, ss 8.3, 8.5
deicing facility – weather conditions, s 8.5
deicing unit – basket capacity – two persons, s 14.2
deicing unit – fluid mixing system – verification of, s 14.4
deicing unit – functional information, s 14.2
deicing unit – open basket v closed cabin, s 14.2
deicing, re-. See fluid application – re-deicing
deicing/anti-icing – definition, p 1
deicing/anti-icing application information transmitted to flightcrew (ICAO) – part of aircraft airworthiness, s 7.4
deicing/anti-icing code. See anti-icing code
deicing/anti-icing, ground (ICAO) – part of aircraft operations, s 7.4
deicing/anti-icing, one-step – definition, p 1
deicing/anti-icing, two-step – definition, p 1
Doc 9640-AN/940, history of, Foreword at p iii
drizzle – definition, p 1
environmental regulations, compliance with, Foreword at p iii, s 4.10
equipment manufacturer recommendations, compliance with, Foreword at p iii
Aircraft Deicing Documents – Issued by ICAO

FAA, role of – as defined by ICAO, s 16.2
flightcrew knowledge of – critical areas, s 1.7 e
flightcrew knowledge of – deicing anti-icing, factors affecting, s 1.7 d)
flightcrew knowledge of – deicing/anti-icing methods, limitations of, s 1.7 c
flightcrew knowledge of – deicing/anti-icing methods, s 1.7 b)
flightcrew knowledge of – hazards of ice, snow and frost, s 1.7 a)
fluid application – APU bleed air off, s 11.2 e)
fluid application – engines, s 11.2 e)
fluid application – fuselage, s 11.2 a)
fluid application – heat loss, s 11.2
fluid application – horizontal stabilizer, s 11.2 b)
fluid application – instrument sensors, s 11.2 f)
fluid application – landing gear, s 11.2 d)
fluid application – re-deicing, s 4.9
fluid application – symmetrical, s 11.2
fluid application – vertical surface, s 11.2 c)
fluid application – wheel bays, s 11.2 d)
fluid application – wing, s 11.2 b)
fluid manufacturer recommendations, compliance with, Foreword at p iii, s 4.10
fluid mixing system, verification of, s 14.4
fluid sampling procedure, s 14.4–14.5
fluid sampling, nozzle, s 14.5
fog – definition, p 1
fog, ground – definition, p 1
fog, supercooled, p 2
freezing drizzle – definition, p 1
freezing fog – definition, p 1
freezing point depressant fluids, s 1.4
freezing rain – definition, p 1
frost – definition, p 1
frost, active – definition, p 1
frozen contamination – effect on control surfaces, s 2.2
frozen contamination – effect on control, s 2.2
frozen contamination – effect on drag, s 2.2
frozen contamination – effect on flap actuating mechanism, s 2.2
frozen contamination – effect on lift, s 2.2
frozen contamination – effect on stall warning system, s 2.2
frozen contamination, removal of – with brushes, s 11.1
frozen contamination, removal of – with forced air, s 11.1
frozen contamination, removal of – with infrared, s 11.1
frozen contamination, removal of – with portable spraying equipment, s 11.1
frozen contamination, removal of – with ropes, s 11.1
ground crew knowledge of – critical areas, s 1.7 e
ground crew knowledge of – deicing anti-icing, factors affecting, s 1.7 d)
ground crew knowledge of – deicing/anti-icing methods, limitations of, s 1.7 c
ground crew knowledge of – deicing/anti-icing methods, s 1.7 b)
ground crew knowledge of – hazards of ice, snow and frost, s 1.7 a)
hazards of ice, snow and frost, s 1.2, 1.7
health authority regulations, compliance with, s 4.10
heat loss, s 11.2
high humidity – definition, p 2
hoarfrost – definition, p 1
HOT – definition, p 2, s 5.1
Guide to Aircraft Ground Deicing – Issue 6

HOT (ICAO) – FAA/TC HOT, s 16
HOT guidance (ICAO), s 5
HOT, format by operator, s 5.3
HOT, no (ICAO) – unspecified weather conditions, s 5
HOT, reduction of – heavy precipitation rates, s 5
HOT, reduction of – high wind velocity, s 5
HOT, reduction of – jet blast, s 5
HOT, reduction of – wing skin temperature lower than OAT, s 5
HOT, start of, s 5.6
HOT, variable affecting, s 5.2
ICAO – deicing/anti-icing bibliography, p 31
ice detection system – aircraft mounted, ss 12.1, 12.3, 12.4
ice detection system – ground based. See ROGIDS
icing, ground, s 1.3
icing, in-flight, s 1.3
moisture, visible – definition, p 2
no spray directly – air stream direction detectors, s 11.2 e)
no spray directly – angle of attack airflow sensors, s 11.2 e)
no spray directly – brake bay, s 11.2 d)
no spray directly – brakes, s 11.2 d)
no spray directly – cabin windows, s 11.2 a)
no spray directly – exhausts, s 11.2 e)
no spray directly – instrument sensors, s 11.2 e)
no spray directly – pitot heads, s 11.2 e)
no spray directly – static vents, s 11.2 e)
no spray directly – thrust reversers, s 11.2 e)
one-step deicing/anti-icing – definition, p 1
operator program, compliance with, Foreword at p iii
pilot-in command – awareness of aircraft condition, s 6.6
pilot-in-command – awareness of deicing/anti-icing fluid characteristics, s 7.6
pilot-in-command – awareness of other relevant factors, s 7.6
pilot-in-command – awareness of taxi times and conditions, s 7.6
pilot-in-command – awareness of weather forecast, s 7.6
pilot-in-command – awareness of weather, s 6.6, 7.6
pilot-in-command – responsibility for accepting aircraft after deicing/anti-icing, s 7.5
pilot-in-command – responsibility for clean aircraft shared with ground crew, s 7.6
pilot-in-command – responsibility for clean aircraft, ss 1.5, 6.1, 7.6
pilot-in-command – responsibility to estimate HOT, s 7.6
post deicing/anti-icing check – by qualified personnel, s 6.3
precipitation intensity – definition, p 2
preflight check – be ground crew, s 6.2
preflight check – by flightcrew, s 6.2
preflight check – wall-around, s 6.2
preflight check, ss 6.1 a), 6.2
pretakeoff check (ICAO) – at night, s 6.6
pretakeoff check (ICAO) – by flightcrew, ss 6.4-6.6
pretakeoff check (ICAO) – external check, s 6.6
pretakeoff check (ICAO) – in severe weather conditions, s 6.6
pretakeoff check (ICAO) – internal check, s 6.6
pretakeoff check (ICAO) – person checking has responsibility to initiate deicing/anti-icing, s 7.6
pretakeoff check (ICAO) – person checking must be designated, trained and qualified, s 7.5
pretakeoff check (ICAO), s 6.4
pretakeoff check, s 1.7
procedures, justification for, Foreword at p iii
quality assurance – includes audits of airline subcontractors, s 7.7
quality assurance – includes audits of deicing/anti-icing procedures, s 7.7
quality assurance program – auditing, s 15 a)
quality assurance program – deicing/anti-icing fluids quality control, s 15 g)
quality assurance program – documentation, s 15 f)
quality assurance program – equipment maintenance, s 15 g)
quality assurance program – methods, s 15 c)
quality assurance program – training records, s 15 d)
quality assurance program – training, s 15 b)
rain – definition, p 2
re-deicing. See fluid application – re-deicing
regulations, history of early, s 1.1
regulations, justification for, Foreword at p iii
regulator – responsibility for airline deicing program compliant with clean aircraft concept, s 7.2
regulator – responsibility for airline to have a deicing program, 7.1
regulator – responsibility for airport sequence reports, s 7.2
regulator – responsibility for ATC winter operations plan, s 9.1
regulator – responsibility for runway and apron condition reports, 7.2
regulator – responsibility for weather data. s 7.2
rime – definition, p 2
rime, p 1
ROGIDS, s 12.1, 12.2, 12.6
SAE Aerospace Council, role of, s 16.2
SAE G-12 Aircraft Ground Deicing Committee, role of, s 16.1
SAE G-12 HOT, role of, s 16.1
SAE G-12 Methods, role of, s 16.2
shear force – definition, p 2
snow – definition, p 2
snow, dry – definition, p 2
snow, wet – definition, p 2
storage system, s 14.3
training – accident prevention, s 13.2 j)
training – anti-icing code, s 13.2 n)
training – checks, s 13.2 f)
training – communication procedures, s 13.2 n)
training – contamination recognition, s 13.2 i)
training – critical surface, s 13.2 i)
training – deicing anti-icing fluid handling, s 13.3
training – deicing anti-icing fluid storage, s 13.3
training – deicing unit, s 13.2 g)
training – deicing unit, s 14.2
training – deicing/anti-icing fluids, s 13.2 c)
training – deicing/anti-icing procedures with specific aircraft, s13.2 e)
training – deicing/anti-icing procedures with specific fluids, s13.2 e)
training – deicing/anti-icing procedures, s 13.2 d–e), 13.2 l)
training – emergency procedures, s 13.2 k)
training – environmental consideration, s 13.2 p)
training – hazards of ice, snow and frost, s 13.2 b)
training – health effects, s 13.2 j)
training – HOT, limitations of, s 13.2 m)
training – HOT, use of, s 13.2 m)
training – ICAO requirements, s 13
training – lesson learned, s 13.2 q)
training – new procedures, s 13.2 q)
training – proof of qualification, s 13.4
training – quality control procedures, s 13.2 h)
training – records – flightcrew, s 13.4
training – records – ground crew, s 13.4
training – records – initial training, s 13.4
training – records – recurrent training, s 13.4
training – records, s 13.4
training – safety precautions, s 13.2 j)
training – spill control, s 13.2 p)
training – spill reporting, s 13.2 p)
training – weather, s 13.2 a)
Transport Canada, role of – as defined by ICAO, s 16.2
two-step deicing/anti-icing – definition, p 1
Type I – composition, s 4.3
Type I – functional description, ss 4.1, 4.4
Type II/III/IV – composition, s 4.5
Type II/III/IV – functional description, ss 4.5-4.8
Type II/III/IV – quality control. ss 4.12, 14.3, 14.5
Type II/III/IV – shear degradation. p 2, ss 4.11, 14.3
Type II/III/IV – shear thinning, p 2
Type II/III/IV degradation – contamination, ss 4.11, 14.3
Type II/III/IV degradation – excessive shearing, ss 4.11, 14.3
Type II/III/IV degradation – heating, ss 4.11, 14.3
Type II/III/IV degradation – improper storage, ss 4.11, 14.3
Type II/III/IV residue check, s 11.5
Type II/III/IV residue, effect of – flight control restrictions, s 11.5
Type II/IV residue formation – Type II/IV without hot water or Type I, s 11.5
Type II/IV residue in aerodynamically quiet areas, s 11.5

Revised 2016-11-10 by ICAO.

This document has a short section116 that describes the standard phraseology to be used by flightcrew and ground crew in deicing/anti-icing operations. Only the section (12.7.2) dealing with deicing/anti-icing operations was indexed in the \textit{Guide}.

Keywords:
anti-icing code, s. 12.7.2.2

communication with flightcrew – aircraft configuration confirmation, s 12.7.2.1
communication with flightcrew – all clear signal, s 12.7.2.2
communication with flightcrew – anti-icing code, s 12.7.2.2
communication with flightcrew – before starting deicing/anti-icing, s 12.7.2.1
communication with flightcrew – deicing unit proximity sensor activation s 12.7.2.3
communication with flightcrew – emergency, s 12.7.2.3
communication with flightcrew – interrupted operations, s 12.7.2.3
communication with flightcrew – post deicing/anti-icing check completion, s 12.7.2.2
communication with flightcrew – proximity sensor activation s 12.7.2.3
communication with flightcrew – HOT, start of, s 12.7.2.2
communication with flightcrew – fluid Type, s 12.7.2.2
emergency – communications, s 12.7.2.3
PANS-ATM – deicing/anti-icing phrasology, s 12.7.2
phraseology, deicing/anti-icing, s 12.7.2
Documents Issued by Boeing

Haruiko Oda117 et al, Safe Winter Operations

Issued by Boeing 2010-10.

Provides airline engineering, maintenance, flight personnel and service providers with procedures and tips for safe winter operations.

Keywords:
alkali organic salts – corrosion of electrical connectors, p 7
alkali organic salts – corrosion of hydraulic system components, p 7
alkali organic salts – effect on carbon brakes, p 7
carbon brake contamination, effects of – decreased service life, p 7
clean aircraft concept – aerodynamically clean aircraft, p 5
clean aircraft concept – derived from FAR 121.629, p 5
clean aircraft concept, p 5
clean condition – air conditioning exits, p 12
clean condition – air conditioning inlets, p 12
clean condition – APU air inlets, p 12
clean condition – brake assemblies, p 12
clean condition – cockpit windows, p 11
clean condition – control surfaces, p 12
clean condition – engine inlets, p 12
clean condition – fuel tank vents, p 12
clean condition – girt bar area (before closing door), p 11
clean condition – landing gear doors, p 12
clean condition – landing gear truck beam, p 12
clean condition – leading edge devices, p 12
clean condition – main gear, p 11
clean condition – nose gear, p 11
clean condition – passenger doors, p 11
clean condition – pitot probes, p 12
clean condition – static ports, p 12
clean condition – tail, horizontal, p 12
clean condition – tail, vertical, p 12
clean condition – wing upper surface, p 12
definition – HOT, p 9
definition – ice, ground accumulated, p 11
definition – ice, operational, p 11
definition – icing conditions, AFM, p 7
fluid application – fuselage from nose to aft, p 11
fluid application – fuselage top centerline to outboard, p 11
fluid application – leading edge to trailing edge, p 11

fluid application – one-step, p 10
fluid application – outboard to inboard, p 11
fluid application – symmetrical – elevator, p 11
fluid application – symmetrical – horizontal stabilizer, p 11
fluid application – symmetrical – vertical stabilizer, p 11
fluid application – symmetrical – wing, p 11
fluid application – symmetrical, p 11
fluid application – two-step, p 10
fluid application. See also no spray; no spray directly
frost on wing underside, p 6
frozen contamination – effect on air flow, p 6
frozen contamination – effect on drag, p 6
frozen contamination – effect on lift, asymmetrical, p 6
frozen contamination – effect on lift, p 6
frozen contamination – effect on pitch, p 6
frozen contamination – effect on roll, p 6
frozen contamination – effect on stall speed, p 6
frozen contamination, removal of – from windows, p 11
HOT – definition, p 9
ice, ground-accumulated – definition, pp 11, 12
ice, ground-accumulated – removal before engine start-up, pp 11, 12
ice, operational – definition, pp 11, 12
ice, operational – removal by engine run-ups, pp 11, 12
icing conditions, AFM – definition, p 7
icing conditions, AFM – ice, snow or slush on ramps, taxiways or runways, p 7
icing conditions, AFM – visible moisture with visibility of one statute mile or less, p 7,
icing conditions, AFM ground – OAT ≤ 10°C, p 7
icing conditions, AFM in flight – total air temperature ≤ 10°C, p 7
MIL-A-8283D specification – not updated, p 7
no spray directly – APU, p 11
no spray directly – brakes, p 11
no spray directly – engine inlets, p 11
no spray directly – exhausts, p 11
no spray directly – pitot probes, p 11
no spray directly – pitot-static probes, p 11
no spray directly – static ports, p 11
no spray directly – TAT probes, p 11
no spray directly – wheels, p 11
no spray directly – windows, p 11
Type II/III/IV – dry-out, heated leading edge, p 12
Type II/III/IV – removal from cockpit windows, p 11
Type II/III/IV – wing anti-ice system OFF on ground, p 12
Type II/III/IV contamination by RDP on aircraft – activation of thrust reversers, p 6
Type II/III/IV contamination by RDP on aircraft – jet blast from other aircraft, p 6
Type II/III/IV contamination by RDP on aircraft – spray from nose gear, p 6
Type II/III/IV degradation – chemical contamination – corrosion in storage vessel, p 11
Type II/III/IV degradation – excessive shearing, p 11
Type II/III/IV degradation – exposure to alkali organic salt RDP, p 6
Type II/III/IV degradation – exposure to alkali organic salts, p 6
Type II/III/IV degradation – heating, p 11
Type II/III/IV residue cleaning – application of corrosion inhibitors to areas cleaned, p 6
Type II/III/IV residue cleaning – lubrication of areas cleaned, p 6
Type II/III/IV residue cleaning, p 6
Type II/III/IV residue formation – role of RDP alkali organic salts, p 6
Type II/III/IV residue formation – Type I to alleviate, pp 6, 10
Type II/III/IV residue formation – use of Type II/III/IV without Type I, p 10
Type II/III/IV residue formation, pp 6, 10
Type II/III/IV residue inspection – according to AMM, p 6
Type II/III/IV residue inspection – auxiliary power unit bay, p 6
Type II/III/IV residue inspection – bilge area of the tail cone, p 6
Type II/III/IV residue inspection – control linkages, p 6
Type II/III/IV residue inspection – control tabs, p 6
Type II/III/IV residue inspection – horizontal stabilizer rear spar, p 6
Type II/III/IV residue inspection – vertical stabilizer, p 6
Type II/III/IV residue inspection – wing leading edge devices, p 6
Type II/III/IV residue inspection – wing rear spar, p 6
Type II/III/IV residue inspection, p 6
Type II/III/IV residue, dried, p 6
Type II/III/IV residue, effect of – flight control restrictions, p 6
Type II/III/IV residue, guidance, Boeing, p 6
Type II/III/IV residue, p 6
Type II/III/IV residue, rehydrated, p 6
wing anti-ice system – not a substitute for ground deicing, p 12
winter operations, guidance (Boeing) – for flightcrews, pp 12–13
winter operations, guidance (Boeing) – for maintenance crews, p 11
winter operations, guidance (Boeing), pp 5–13
PART TWO: THE RUNWAY DEICING DOCUMENTS

A chart with the runway deicing documents can be found in Figure 2 at p 216.

Documents Issued by the SAE G-12 Runway Deicing Fluid Committee

AMS1431D Compound, Solid Runway and Taxiway Deicing/Anti-Icing

Revised 2012-06-08 by SAE G-12 RDF.

AMS1431D sets the technical requirements for runway deicing and anti-icing products in the form of a solid.\(^{118}\) Runway deicing products (RDP) are used typically at airports on aircraft maneuvering areas, such as aprons, runways, and taxiways, for the prevention and removal of frozen deposits of snow, frost, and ice.

Keywords:
aircraft maneuvering area deicing product. See RDP
airfield deicing fluid. See RDP
apron deicing product. See RDP
cadmium plate corrosion – reporting requirement p 1, s 3.2.9.3.1
carbon brake oxidation – reporting requirement, Rationale at p 1
definition – RDP, solid – lot, s 4.3
RDP nomenclature see footnote 118
RDP, solid – acceptance tests, s 4.2.1
RDP, solid – AIR6130 reporting, s 3.2.9.3.1
RDP, solid – airfield use label, s 5.1.2
RDP, solid – approval by purchaser, s 4.4
RDP, solid – aquatic toxicity, s 3.1.1.4
RDP, solid – asphalt concrete degradation resistance, s 3.8.2.2
RDP, solid – biodegradation, s 3.1.1.3
RDP, solid – BOD, s 3.1.1.1
RDP, solid – chloride content, s 3.2.3
RDP, solid – composition, s 3.1

\(^{118}\) Use of words to design runway deicing products in solid and liquid form is not systematic in the SAE documents and even within a document. AMS1431D uses “Solid Runway and Taxiway Deicing/Anti-icing Compound” in its title. Section 1.3.1 refers to “deicers/anti-icers”, s 3.1 “product”, s 3.1.1 “compound”, s 3.1.1.4 “formulated compound”. AMS1435C: title “Deicing/Anti-icing Runways (sic) and Taxiways (sic) Generic Fluid”, s 1.1 “deicing and anti-icing materials”, s 1.3.4 “fluid product”, s 1.4 “deicing anti-icing formulations”, s 3.1 “fluid”. AIR6130 rationale section “runway deicing/anti-icing compounds”, “runway deicers”, “deicing compound”, s 1 “runway deicing compound”. AIR6170, AIR6172 and AIR6211 use in their titles “… Runways (sic) and Taxiways (sic) Deicing/Anti-icing Chemicals”. The following nouns are used almost interchangeably: fluid, compound, deicer, chemical, material and product. Fluid does not encompass solids and vice versa. Compound, in chemistry, is a substance formed by a combination of elements in fixed proportions – not what we have here. Deicer can be a chemical, a person or a vehicle – too imprecise. Material is usually referred to as a substance to make things. Chemical, unfortunately, is oft perceived negatively. For lack of a better term, in this document, the runway deicing fluid (RDF) and solids (no abbreviation) are indexed as runway deicing product (RDP): RDF, liquid and RDP, solid.
RDP, solid – ecological behavior, s 3.1.1.4
RDP, solid – effect on aircraft materials, s 3.2.9
RDP, solid – effect on painted surfaces, s 3.2.6
RDP, solid – effect on transparent plastics, s 3.2.5
RDP, solid – effect on unpainted surfaces, s 3.2.7
RDP, solid – Federal (US) Supply Classification 6850, s 8.4
RDP, solid – flash point, s 3.2.2
RDP, solid – friction evaluation, s 1.3.2
RDP, solid – hydrogen embrittlement, s 3.2.9.4
RDP, solid – ice melting, s 3.2.10
RDP, solid – ice penetration, s 3.1.10
RDP, solid – ice undercutting, s 3.2.10
RDP, solid – independent laboratory testing, ss 4.1, 4.5
RDP, solid – labels, s 5
RDP, solid – lot – definition, s 4.3
RDP, solid – lot number, s 5.1.2
RDP, solid – low embrittling cadmium plate, s 3.2.9.3
RDP, solid – safety data sheet, s 4.5.1
RDP, solid – periodic tests, s 4.2.2
RDP, solid – pH, s 3.2.1
RDP, solid – physical properties, s 3.2
RDP, solid – preproduction tests, s 4.2.3
RDP, solid – rejection, s 7
RDP, solid – reports, s 4.5
RDP, solid – resampling, s 4.6
RDP, solid – runway concrete surface scaling resistance, s 3.2.8.1
RDP, solid – sampling plan, s 4.3
RDP, solid – sampling, s 4.3
RDP, solid – sandwich corrosion, s 3.2.9.1
RDP, solid – storage stability, s 3.2.4
RDP, solid – stress corrosion resistance, s 3.2.9.5.1
RDP, solid – TOD, s 3.1.1.2
RDP, solid – total immersion corrosion
RDP, solid – total water content, s 3.1.3
RDP, solid – trace contaminants, s 3.1.2
runway deicer. See RDP
runway deicing chemical. See RDP
runway deicing compound. See RDP
runway deicing fluid. See RDP, liquid
runway deicing product. See RDP
runway deicing solid. See RDP, solid
runway deicing/anti-icing compound. See RDP
solid runway and taxiway deicing/anti-icing compound. See RDP, solid
taxiway deicing compound. See RDP
taxiway deicing product. See RDP
AMS1435C sets the technical requirements for runway deicing and anti-icing products in the form of a liquid. Runway deicing products are used typically at airports on aircraft maneuvering areas, such as aprons, runways, and taxiways, for the prevention and removal of frozen deposits of snow, frost, and ice. Runway deicing products (RDP) in liquid form, also known as runway deicing fluids, must never be used as aircraft deicing fluid.
AIR6130A Cadmium Plate Cyclic Corrosion Test

Revised 2017-05-18 by SAE G-12 RDF.

AIR6130A describes a 14-day material test to determine the cyclic effects of runway deicing products on aircraft cadmium plated parts. Some runway and taxiway deicing/anti-icing products, have been found to cause severe corrosion on aircraft components with cadmium plating. There is a need for users to understand the effect of these products on aircraft components when they are
exposed repeatedly in a normal winter operating environment. The existing test in the AMS1431D and AMS1435C specifications for runway deicing products is a one-time 24 hour immersion test for cadmium corrosion, which does not accurately reflect how aircraft and airport equipment are affected by runway deicers. AIR6130 with its 14-day cyclic test is intended to provide better information to the end user/purchaser of the deicing products regarding the cyclic effects on cadmium plated aircraft parts or airport equipment. The document is intended to be referred to by the AMS1431 and AMS1435 specifications, which will then provide more useful information to the end-users in the test report.

Keywords:
cadmium plate cyclic corrosion test – AMS1431 sample, s 3c
cadmium plate cyclic corrosion test – AMS1435 sample, s 3b
cadmium plate cyclic corrosion test – cleaning of test specimens, s 5b
cadmium plate cyclic corrosion test – criterion for undesirable corrosion effects, s 6
cadmium plate cyclic corrosion test – gravimetric results, ss 5i., 5l.
cadmium plate cyclic corrosion test – procedure, s 5
cadmium plate cyclic corrosion test – runway deicing compound sample, s 3
cadmium plate cyclic corrosion test – sample preparation, s 4
cadmium plate cyclic corrosion test – steel substrate, s 3
cadmium plate cyclic corrosion test – test coupons, s 3
cadmium plate cyclic corrosion test – test results, s 6
cadmium plate cyclic corrosion test – test specimen, s 3
cadmium plated aircraft parts – RDP caused corrosion, s 1
cadmium plated aircraft parts corrosion test. See cadmium plate cyclic corrosion test
corrosion of cadmium plated aircraft parts – undesirable corrosion criterion, s 6
corrosion of cadmium plated aircraft parts, s 1
corrosion, undesirable – criterion for, s 6
RDP – cadmium plate cyclic corrosion test, Title at p 1, s 1
RDP – undesirable corrosion criterion, s 6
RDP caused corrosion – undesirable corrosion criterion, s 6
runway deicing fluid. See RDP, liquid
runway deicing/anti-icing compound. See RDP
taxiway deicing/anti-icing compound. See RDP
undesirable corrosion criterion, s 6

AIR6170A Ice Melting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals

Revised 2017-01-21 by SAE G-12 RDF.

AIR6170A describes a quantitative test method for liquid and solid deicing/anti-icing products, to evaluate the amount of ice melted as a function of the time and temperature.
Guide to Aircraft Ground Deicing – Issue 6

Keywords:
AMS1431 RDP ice melting test. See RDP ice melting test
AMS1435 RDP ice melting test. See RDP ice melting test
ice melting test for RDP. See RDP ice melting test
ice melting test. See RDP ice melting test
RDP comparative melting capability, s 3.2
RDP ice melting capability, comparative, s 3.2
RDP ice melting relative capacity, s 1
RDP ice melting test ice preparation, s 3.3.5
RDP ice melting test procedure, s 3.4
RDP ice melting test reference control solution, ss 3.5.3, 3.5.3.1, 3.5.3.2
RDP ice melting test report, s 3.8
RDP ice melting test sample preparation, ss 3.5.1, 3.5.2
RDP ice melting test significance, s 1
RDP ice melting test significance, ss 1, .2
RDP ice melting test temperatures ss 3.6, 3.7
RDP ice melting test, Title at p 1
RDP ice melting v temperature, ss 1, 3.8
RDP ice melting v time, ss 1, 3.8
RDP use on taxiways, s 1
RDP, liquid – ice melting test. See RDP ice melting test
RDP, solid – ice melting test. See RDP ice melting test
SHRP H-332, s 2

AIR6172A Ice Undercutting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals

Revised 2017-03-15 by SAE G-12 RDF.

AIR6172A describes a quantitative test method, for liquid and solid runway deicing/anti-icing products (RDP), to evaluate the ice undercut as a function of the time and temperature.

Keywords:
AMS1431 RDP ice undercutting test. See RDP ice undercutting test
AMS1435 RDP ice undercutting test. See RDP ice undercutting test
ice undercutting test, RDP. See RDP ice undercutting test, Title at p 1
ice undercutting test. See RDP ice undercutting test
RDP ice undercutting test description, s 3.1
RDP ice undercutting test dye, ss 3.3.1, 3.4.4
RDP ice undercutting test dye – rhodamine, s 3.3.3
RDP ice undercutting test dye – fluorescein, s 3.3.3
RDP ice undercutting test equipment, s 3.3
RDP ice undercutting test ice cavity preparation, s 3.3.6
RDP ice undercutting test ice preparation, s 3.3.5
RDP ice undercutting test procedure, s 3.4
RDP ice undercutting test reference control solution, ss 3.4.3, 3.4.3.1, 3.4.3.2
RDP ice undercutting test reference control solution – 25% w/w potassium acetate solution, s 3.4.3.2
RDP ice undercutting test report, s 3.7
RDP ice undercutting test sample preparation, ss 3.4.1, 3.4.2
RDP ice undercutting test significance, s 3.2
AIR6211A Ice Penetration Test Method for Runways and Taxiways Deicing/Anti-Icing Chemicals

Revised 2017-05-08 by SAE G-12 RDF.

AIR6211A describes a quantitative method, for liquid and solid runway deicing/anti-icing products (RDP), to evaluate the ice penetration as a function of the time and temperature.

Keywords:
AMS1431 RDP ice penetration test. See RDP ice penetration test
AMS1435 RDP ice penetration test. See RDP ice penetration test
ice penetration test. See RDP ice penetration test
RDP ice penetration test – description, s 3.1
RDP ice penetration test dye, s 3.4.4
RDP ice penetration test ice preparation, s 3.3.4
RDP ice penetration test procedure, s 3.4
RDP ice penetration test reference control solution – potassium acetate 50%, s 3.4.3.1
RDP ice penetration test reference control solution – potassium acetate 25%, s 3.4.3.2
RDP ice penetration test reference control solution,
RDP ice penetration test reference control solution, s 3.4.3
RDP ice penetration test significance – reporting, s 3.7
RDP ice penetration test significance, s 3.2
RDP ice penetration test temperature, ss 3.6, 3.7
RDP ice penetration test time, s 3.7
RDP ice penetration test, Title at p 1
RDP, liquid – ice penetration test. See RDP ice penetration test
RDP, solid – ice penetration test. See RDP ice penetration test
SHRP H-332, s 2.4

Documents Issued by the SAE A-5A Wheels, Brakes and Skid Control Committee

AIR5490A Carbon Brake Contamination and Oxidation

Revised 2016-04-12 by SAE A-5A.

This document provides information on the susceptibility of aircraft carbon brake discs to contamination and oxidation. Carbon used in the manufacture of aircraft brake discs is porous, and can absorb liquids and contaminants, such as runway deicing products (RDP), aircraft deicing
fluids (ADF), sea water, aircraft hydraulic fluid, aircraft wash fluids, sea water, cleaning solvents, etc. Some of the contaminants can negatively impact the intended performance of the brakes, particularly through catalytic oxidation of the carbon.

Although aircraft carbon brakes had been operating for many years with the occasional oxidative degradation issues, the introduction of environmentally-friendly, low BOD, alkali organic salt based runway deicing products in the 1990s resulted in significant increases in the frequency of occurrences and severity of carbon brake disk degradation. The catalytic oxidative action is attributed to the alkali moiety of the organic salts.

This document intends to raise awareness of the effects of carbon brake contamination and present information on the chemicals promoting catalytic oxidation, the mechanism of oxidation, and inspection technique on and off the aircraft.\(^\text{119}\)

Keywords:
aircraft carbon brake. See carbon brake
aircraft deicing fluid. See deicing fluid
aircraft hydraulic fluid – definition, s 2.2
aircraft lubricant – definition, s 2.2
airplane. See aircraft
antioxidant (AO) treatments, s 2.2
carbon brake – definition, s 2.2
carbon brake antioxidant treatment – barrier coating, s 5.2.4a
carbon brake antioxidant treatment – barrier coating, self-healing, s 5.2.4a
carbon brake antioxidant treatment – chemical vapor infiltration, s 5.2.5
carbon brake antioxidant treatment – densification of the polyacrylonitrile fibers, s 5.2.5
carbon brake antioxidant treatment – disk soaking, s 5.2.4a
carbon brake antioxidant treatment – oxidation inhibitor, s 5.2.4b
carbon brake antioxidant treatment – oxidation inhibitor, phosphate based, s 5.2.4b
carbon brake antioxidant treatment – oxidation resistance of the carbon, s 5.2.5
carbon brake antioxidant treatment – phosphate solution, s 5.2.4b
carbon brake antioxidant treatment – porosity of the carbon, s 5.2.5
carbon brake catalytic oxidation, Rationale at p 1
carbon brake contamination – decontamination method, s 8
carbon brake contamination – effects of humidity on friction coefficient of contaminated brakes, s 6.2
carbon brake contamination – prevention – phosphate solutions\(^\text{120}\), s 5.2.4b
carbon brake contamination, detection of – chromatography, s 5.4

\(^{119}\) SAE Committee A-5A appears to use the word airplane rather than aircraft in the following expressions: airplane anti-icing/deicing fluids, airplane hydraulic fluids, airplane lubricants, and airplane wash fluids. In this Guide to Aircraft Ground Deicing, we index the word “aircraft” rather than the word “airplane”. Specifically, Committee A-5A refers to airplane anti-icing/deicing fluids. SAE G-12 refers to them as aircraft deicing/anti-icing fluids. Here we follow SAE G-12 usage.

\(^{120}\) Section 8 of AIR5490 stated that brake manufacturers had used phosphate or boron solutions to protect against oxidation. Boron solution was deleted from AIR5490A; no explanation was given.
carbon brake contamination, detection of – conductivity measurement, s 5.4
carbon brake contamination, detection of – discoloration, s 5.4.1
carbon brake contamination, detection of – hardness probes, with, s 5.4
carbon brake contamination, detection of – odor, s 5.4
carbon brake contamination, detection of – off-aircraft inspection, s 5.4.4
carbon brake contamination, detection of – on-aircraft inspection, s 5.4.3
carbon brake contamination, detection of – smoke, s 5.4
carbon brake contamination, detection of – spectrometry, s 5.4
carbon brake contamination, detection of – staining, s 5.4
carbon brake contamination, detection of – visual means, by, ss 5.4, 5.4.1, 5.4.2, 5.4.3.1
carbon brake contamination, effects of – aircraft runway over-runs, s 6.2
carbon brake contamination, effects of – brake disk lug rupture, s 5.3.1
carbon brake contamination, effects of – brake disk rupture, s 6.1
carbon brake contamination, effects of – brake overheating, s 6.2
carbon brake contamination, effects of – brake torque, s 4.2.2
carbon brake contamination, effects of – brake vibrations, ss 4.2.2, 6.1
carbon brake contamination, effects of – brake wear, s 4.2.2
carbon brake contamination, effects of – brake wear, ss 3b, 6.3
carbon brake contamination, effects of – catalytic oxidation, s 3a
carbon brake contamination, effects of – complete loss of braking capability, s 5.3.1
carbon brake contamination, effects of – friction coefficient, increase and decrease, s 6.2
carbon brake contamination, effects of – increased aircraft braking distance in rejected takeoff, s 5.3.1
carbon brake contamination, effects of – loss in braking performance, ss 3a, 5.3.1
carbon brake contamination, effects of – loss of brake disc reuse capability, s 5.3.3
carbon brake contamination, effects of – loss of friction area, s 3a
carbon brake contamination, effects of – loss of mechanical strength, s 3a
carbon brake contamination, effects of – loss of rubbed area, s 3a
carbon brake contamination, effects of – mass loss, s 5.1.2
carbon brake contamination, effects of – over heating of other brakes, s 6.2
carbon brake contamination, effects of – partial loss of braking capability, s 5.3.1
carbon brake contamination, effects of – premature brake removal, s 5.3.2
carbon brake contamination, effects of – runway over-runs, s 6.2
carbon brake contamination, effects of – structural brake disc failure, ss 3a, 5.3
carbon brake contamination, effects of – temporary or permanent change in friction level, ss 3b, 6.2
carbon brake contamination, effects of – torque reduction, s 3
carbon brake contamination, effects of – uneven braking, s 6.2
carbon brake contamination, effects of – vibration, squeal, s 6.1
carbon brake contamination, effects of – vibration, whirl, s 6.1
carbon brake contamination, effects of – p 1
carbon brake contamination, prevention of – use of wheel covers, s 7
carbon brake degradation, Rationale at p 1
carbon brake friction and wear modifier – definition, s 4.2.2
carbon brake inspection, Rationale at p 1
carbon brake operating temperature v steel brake operating temperature, s 3a
carbon brake oxidation – oxidation effects v cumulative thermal load, s 5.3
carbon brake oxidation temperature in absence of contamination [ca 400 °C], s 5.1.1
carbon brake oxidation, effect of. See also carbon brake contamination, effects of
carbon brake oxidation, factors influencing – aircraft deicing fluids, s 5.2.7
carbon brake oxidation, factors influencing – airline route structure, s 5.2.6
carbon brake oxidation, factors influencing – airport selection of RDP, s 5.2.6
carbon brake oxidation, factors influencing – alcohols based RDP, s 5.2.6
carbon brake oxidation, factors influencing – alkali metal acetate based RDP, s 5.2.6
carbon brake oxidation, factors influencing – alkali metal formate based RDP, s 5.2.6
carbon brake oxidation, factors influencing – ambient temperature, s 5.2.1
carbon brake oxidation, factors influencing – antioxidant coatings, s 5.2.4
carbon brake oxidation, factors influencing – antioxidant treatment, s 5.2.4
carbon brake oxidation, factors influencing – brake wear, s 5.2.1
carbon brake oxidation, factors influencing – cleaners, s 5.2.8
carbon brake oxidation, factors influencing – cooling air, s 5.2.2
carbon brake oxidation, factors influencing – cooling ducts in wheel bay, s 5.2.2
carbon brake oxidation, factors influencing – cooling fans, s 5.2.2
carbon brake oxidation, factors influencing – energy absorbed during braking, s 5.2.1
carbon brake oxidation, factors influencing – length of winter, s 5.2.6
carbon brake oxidation, factors influencing – mass of carbon heat sink, s 5.2.1
carbon brake oxidation, factors influencing – number of landings per overhaul, s 5.2.3
carbon brake oxidation, factors influencing – number of thermal cycles, s 5.2.3
carbon brake oxidation, factors influencing – peak temperature ss 5.1.1, 5.2.1
carbon brake oxidation, factors influencing – peak temperature, time at ss 5.1.1, 5.2.1
carbon brake oxidation, factors influencing – ram air cooling, s 5.2.2
carbon brake oxidation, factors influencing – time of exposure to contaminant, s 5.2.10
carbon brake oxidation, factors influencing – urea based RDP, s 5.2.6
carbon brake oxidation, factors influencing – wheel brake structure, s 5.2.1
carbon brake oxidation, factors influencing – wind, s 5.2.1
carbon brake oxidation, Rationale at p 1
carbon brake removal criteria, s 5.4.3.2
carbon brake return-to-service criteria, s 5.4.4.2
carbon brake, smoke from, s 4.2.1 note
carbon brake, sources of contamination – acetate v formate, s 4.2.1b
carbon brake, sources of contamination – aircraft deicing fluids, s 4.1b
carbon brake, sources of contamination – aircraft hydraulic fluids, s 4.1e
carbon brake, sources of contamination – aircraft hydraulic fluids, phosphate ester based, s 4.1c
carbon brake, sources of contamination – aircraft lubricants, s 4.1d
carbon brake, sources of contamination – aircraft wash fluids, s 4.1c
carbon brake, sources of contamination – alkali organic salts, s 4.2.1b
carbon brake, sources of contamination – alkali metal salts, s 4.2.1b
carbon brake, sources of contamination – automatic aircraft washing systems, s 7
carbon brake, sources of contamination – calcium salts, s 4.2.1c
carbon brake, sources of contamination – catalyst – alkali metal based RDP, s 4.2.1b
carbon brake, sources of contamination – catalyst – anti-viral agent, s 4.2.1f
carbon brake, sources of contamination – catalyst – calcium from cleaning agents, s 4.2.1c
carbon brake, sources of contamination – catalyst – disinfectants, ss 4.2.1f, 5.2.9
carbon brake, sources of contamination – catalyst – potassium acetate, s 4.2.1b
carbon brake, sources of contamination – catalyst – potassium formate, s 4.2.1b
carbon brake, sources of contamination – catalyst – potassium from cleaning agents, s 4.2.1c
carbon brake, sources of contamination – catalyst – potassium in Purple K fire extinguishers, s 4.2.1k
carbon brake, sources of contamination – catalyst – RDP, s 4.2.1b
carbon brake, sources of contamination – catalyst – sodium acetate, s 4.2.1b
carbon brake, sources of contamination – catalyst – sodium formate, s 4.2.1b
carbon brake, sources of contamination – catalyst – sodium from cleaning agents, ss 4.2.1a, 4.2.1c
carbon brake, sources of contamination – catalyst – sodium from sea water, s 4.2.1a
carbon brake, sources of contamination – catalyst – sodium hypochlorite, ss 4.2.1f, 5.2.9
carbon brake, sources of contamination – catalyst – temperature indicating crayon marks, s 4.2.1e
carbon brake, sources of contamination – catalyst, s 4.2.1
carbon brake, sources of contamination – cleaning solvents, ss 4.1g, 5.2.8
carbon brake, sources of contamination – disinfectants, bleach containing, ss 4.1h, 5.2.9
carbon brake, sources of contamination – disinfectants, calcium containing, s 4.1h
carbon brake, sources of contamination – disinfectants, chlorine\(^{121}\) containing, ss 4.1h, 5.2.9
carbon brake, sources of contamination – disinfectants, citric acid containing, s 4.1h
carbon brake, sources of contamination – disinfectants, hypochlorite containing, ss 4.1h, 5.2.9
carbon brake, sources of contamination – disinfectants, potassium containing, s 4.1h
carbon brake, sources of contamination – disinfectants, sodium containing, s 4.1h
carbon brake, sources of contamination – fire extinguishing agent, ss 4.1f, 4.2.2
carbon brake, sources of contamination – formate v acetate, s 4.2.1b
carbon brake, sources of contamination – hydraulic fluid leaks, s 4.2.2
carbon brake, sources of contamination – hydraulic system servicing, s 4.2.2
carbon brake, sources of contamination – RDP, s 4.1a
carbon brake, sources of contamination – sea water, s 4.1j
carbon brake, sources of contamination – solvents, cleaning, ss 4.1g, 5.2.8
carbon brake, sources of contamination – temperature indicator crayon marks, s 4.1i

carbon friction material, s 3
catalytic oxidation – definition, s 2.2
cleaning solvent – definition, s 2.2
contamination, carbon brake. See carbon brake contamination
definition – aircraft deicing fluid. See definition – deicing fluid
definition – aircraft hydraulic fluid, s 2.2
definition – aircraft lubricant, s 2.2
definition – carbon brake friction and wear modifier, s 4.2.2
definition – carbon brake, s 2.2
definition – catalytic oxidation. See definition – oxidation, catalytic
definition – cleaning solvent, s 2.2
definition – deicing fluid, s 2.2
definition – disinfectant, s 2.2
definition – fire extinguishing agent, s 2.2
definition – hygroscopic, s 2.2
definition – lubricant, aircraft, s 2.2
definition – oxidation [of carbon], s 2.2
definition – oxidation, thermal, s 2.2.
definition – oxidation, catalytic, s 2.2
definition – runway anti-icing/deicing solids and fluids, s 2.2
definition – temperature indication markers, s 2.2
definition – thermal oxidation, s 2.2.
definition – tribology, s 2.2
deicing fluid – definition, s 2.2
disinfectant – definition, s 2.2
fire extinguishing agent – definition, s 2.2
hydraulic fluid – effect on carbon brake, s 4.2.1 note
hygroscopic\(^{122}\) – definition, s 2.2
lubricant, aircraft – definition, s 2.2
oxidation [of carbon] – definition, s 2.2
oxidation, thermal, s 2.2
RDP – catalytic oxidation of carbon brakes, Rationale at p 1, s 1
RDP – effect on carbon brakes, Rationale at p 1
RDP – market introduction history, Rationale at p 1, s 5.2.6

\(^{121}\) ARP5490A, in section 4.1h, lists chlorine containing disinfectants as potential source of carbon brake contamination. Chlorine is meant to include hypochlorite and bleach (see section 5.2.9).

\(^{122}\) AIR5490A, in section 2.2, defines hygroscopic as absorbs liquid. Hygroscopic is usually defined as the property of a substance that takes up and retains moisture.
AIR5567A Test Method for Catalytic Brake Oxidation

Issued 2015-08-17 by SAE A-5A.

This test method provides stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of runway deicing products on carbon brake oxidation. This simple test is only designed to assess the relative effects of runway deicing products by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake oxidation is a function of heat sink design and the operating environment.

Keywords:
- aircraft carbon brake. See carbon brake
- alkali metal salts – effect on carbon brakes, p 1
- alkali organic salts – catalyst for carbon brake oxidation, p 1
- carbon brake antioxidant treatment, generic, s 3.2
- carbon brake oxidation – catalysis by alkali salts, s 1
- carbon brake oxidation – catalysis by RDP, s 1
- carbon brake oxidation test method – antioxidant formulation, generic, s 3.2
- carbon brake oxidation test method – antioxidant, application of, s 3.3
- carbon brake oxidation test method – carbon coupon selection, s 3.1
- carbon brake oxidation test method – coupon oxidation procedure, s 3.5
- carbon brake oxidation test method – mean normalized carbon weight loss %, s 4.2
- carbon brake oxidation test method – potassium acetate normalized results, s B.3
- carbon brake oxidation test method – potassium formate normalized results, s B.3
- carbon brake oxidation test method – RDP application to coupon, s 3.4
- carbon brake oxidation test method – round robin testing, s B.3
- carbon brake oxidation test method – sodium acetate normalized results, s B.3
- carbon brake oxidation test method – test result for liquid RDP, s 4.2
- carbon brake oxidation test method – test result for solid RDP, s 4.2
- carbon brake oxidation test method – test results, s 4
- carbon brake oxidation test method – test temperature (550 °C), s 3.5d.
- carbon brake oxidation test method – test time (24 h), s 3.5 e.
- carbon brake oxidation test method – urea normalized results, s B.3
- carbon brake oxidation test method – weight loss %, mean normalized, s 4.2
- carbon brake oxidation test method, Title at p 1
- carbon brake oxidation threshold limit – not possible to measure, s 1
- carbon brake oxidation, effect of – mass change, s 1
- carbon brake oxidation, effect of – weight loss, s 1
- RDP – carbon brake oxidation test method, p 1
- RDP – catalysis of carbon brakes, p 1
RDP – effect on carbon brakes p 1, s 1
Documents Issued by SAE G-15 Airport Snow and Ice Control

AMS1448B Sand, Airport Snow and Ice Control

This is a stabilized document meaning it is no longer updated by SAE G-15 and is not known to be used actively by air carriers or operators.

It is included in this Guide as, from time to time, questions are asked on the effects of sand upon aircraft components which are discussed briefly in AMS1448B.

Keywords:
sand – aircraft engine, detrimental to, s 1.3
sand – boxed dry, s 3.1
sand – chlorides as contaminant, s 3.2.1
sand – containers, s 5
sand – effect on aircraft engines, s 1.3
sand – free form corrosive agent, s 3.1
sand – free from clay, s 3.1
sand – free from debris, s 3.1
sand – free from organic matter, s 3.1
sand – free from salts, s 3.1
sand – free from stones, s 3.1
sand – gradation, s 3.1.1
sand – impurities, s 3.1
sand – periodic tests, s 4.2.2
sand – preproduction tests, s 4.2.3
sand – quality assurance, s 4
sand – rejection, s 7
sand – report, s 4.5
sand – sampling, s 4.3
sand – specification, title at p 1
sand – use on ramp, s 1.2
sand – use on runway, s 1.2
sand – use on taxiway, s 1.2
sand – washed, s 3.1
sand – washed, s 3.1

Documents Issued by the FAA

FAA Special Airworthiness Information Bulletin SAIB NM-08-27R1 Landing gear: Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icing (RDI) Fluids

Issued 2008-12-31 by the FAA.
This bulletin informs aircraft owners and operators of the deleterious effect of alkali organic salts based runway deicing products on aircraft with carbon brakes. The alkali moiety of the organic salts are known to catalyze oxidation of the carbon with accompanying possible brake failure. The FAA recommends detailed visual inspection of carbon brake stators and rotors, looking for obvious damage. Depending on wheels removal frequency and findings, more frequent inspections may be appropriate to prevent reduction of brake effectiveness or brake failure.

Keywords:
carbon brake contamination process, pp 1-2
carbon brake contamination, detection of – visual means – carbon chips, p 2
carbon brake contamination, detection of – visual means – crushed carbon, p 2
carbon brake contamination, detection of – visual means – damaged carbon, p 2
carbon brake contamination, detection of – visual means – debris, p 2
carbon brake contamination, detection of – visual means – flaked carbon, p 2
carbon brake contamination, detection of – visual means – frayed carbon, p 2
carbon brake contamination, detection of – visual means – missing carbon, p 2
carbon brake contamination, detection of – visual means – soft carbon, p 2
carbon brake contamination, detection of – visual means p 2
carbon brake contamination, effects of – brake failure during aborted takeoff, p 2
carbon brake contamination, effects of – brake failure, p 3
carbon brake contamination, effects of – dragged brake, p 2
carbon brake contamination, effects of – overheated brakes, p 2
carbon brake contamination, effects of – vibrations, p 2
carbon brake inspection frequency, pp 2–3
carbon brake rotor inspection, pp 2–3
carbon brake stator inspection, pp 2–3
carbon brake, sources of contamination – catalyst – alkali metal based RDP, p 1
carbon brake, sources of contamination – catalyst – potassium acetate, p 1
carbon brake, sources of contamination – catalyst – potassium formate, p 1
carbon brake, sources of contamination – catalyst – RDP, p 1
RDP – catalytic oxidation of carbon brakes, p 1
RDP – oxidation of carbon brakes, p 1

Documents Issued by Transport Canada

Transport Canada, Catalytic Oxidation of Aircraft Carbon Brakes due to Runway Deicing (RDI) Fluids, Service Difficulty Advisory AV-2009-03

Issued 2009-06-26 by Transport Canada.

This advisory informs aircraft owners and operators of the deleterious effect of alkali organic salts based runway deicing products on aircraft with carbon brakes. The alkali moiety of the organic salts are known to catalyze oxidation of the carbon with accompanying possible brake failure or
dragged bake and subsequent overheat. Transport Canada recommends detailed visual inspection of carbon brake stators and rotors at each landing gear wheel removal, looking for obvious damage.

Keywords:
carbon brake contamination process, p 1
carbon brake contamination, detection of – visual means – carbon chips, p 2
carbon brake contamination, detection of – visual means – crushed carbon, p 2
carbon brake contamination, detection of – visual means – damaged carbon, p 2
carbon brake contamination, detection of – visual means – flaked carbon, p 2
carbon brake contamination, detection of – visual means – missing carbon, p 2
carbon brake contamination, detection of – visual means – soft carbon, p 2
carbon brake contamination, detection of – visual means p 2
carbon brake contamination, effects of – brake degradation, p 1
carbon brake contamination, effects of – brake failure during aborted takeoff, p 1
carbon brake contamination, effects of – brake failure, p 1
carbon brake contamination, effects of – dragged brake, p 1
carbon brake contamination, effects of – overheated brakes, p 1
carbon brake contamination, effects of – vibrations, p 1
carbon brake rotor inspection, p 2
carbon brake stator inspection, p 2
carbon brake inspection frequency, p 2
carbon brake, sources of contamination – catalyst – alkali metal based RDP, p 1
carbon brake, sources of contamination – catalyst – potassium acetate, p 1
carbon brake, sources of contamination – catalyst – potassium formate, p 1
carbon brake, sources of contamination – catalyst – RDP, p 1
RDP – catalytic oxidation of carbon brakes, p 1
RDP – oxidation of carbon brakes, p 1

Documents Issued by EASA

EASA Safety Information Bulletin SIB No.: 2018-01 Information on Materials Used for Runway and Taxiway De/Anti-icing

Issued 2018 01 09 by EASA

Alkali organic salts based runway deicing products have deleterious effects on aircraft carbon brakes. The alkali organic salts penetrate carbon brakes lowering the oxidation temperature of the carbon resulting in structural deterioration of carbon discs, reducing efficiency and long-term efficiency of the brakes. EASA believes aircraft operators should be aware of the nature of the runway deicing products used at airports to assess exposure of the brakes to the alkali organic salts and adjust maintenance programs. This information should be noted in SNOWTAM or in the Aeronautical Information Publication (AIP).
Keywords
AIP reporting – RDP, p 1
alkali organic salts – aircraft maintenance program, p 1
alkali organic salts – effect on carbon brakes, p1
alkali organic salts – oxidation of carbon brakes, p 1
carbon brake contamination process, p 1
RDP – oxidation of carbon brakes, p 1
RDP – SNOWTAM display, p 1
RDP reporting recommendation, p 2
SNOWTAM – EG, p 2
SNOWTAM – GAC, p 2
SNOWTAM – KAC, p 2
SNOWTAM – KFOR, p 2
SNOWTAM – NAAC, p 2
SNOWTAM – NAFO, p 2
SNOWTAM – PG, p 2
SNOWTAM – SAND, p 2
SNOWTAM – UREA, p 2
SNOWTAM reporting – RDP, p 1

EASA Safety Information Bulletin SIB No.: 2008-19R2 Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icers

Revised 2013 04 23 by EASA.

This bulletin informs aviation stakeholders of the deleterious effect of alkali organic salts based runway deicing products on aircraft with carbon brakes. The alkali moiety of the organic salts are known to catalyze oxidation of the carbon with accompanying possible brake failure or dragged bake and subsequent overheat. EASA recommends detailed visual inspection of carbon brake stators and rotors at each landing gear wheel removal, looking for obvious damage. EASA further raises issues of cadmium and aluminum corrosion of landing gear joints and of electrical wire bundles, particularly those using Kapton®123 insulation, caused by alkali organic salts.

Keywords:
alkali organic salts – effect on aluminum, p 1
alkali organic salts – effect on cadmium, p 1
alkali organic salts – effect on carbon brakes, p 1
alkali organic salts – effect on Kapton insulation, p 2
alkali organic salts – effect on landing gear, p 2
alkali organic salts – effect on wire bundles, p 2
carbon brake contamination process, p 1
carbon brake contamination, detection of – visual means – carbon chips, p 3
carbon brake contamination, detection of – visual means – crushed carbon, p 3

123 Trademark of E. I. du Pont de Nemours and Company.
Runway Deicing Documents – Issued by the FAA, Transport Canada and EASA

carbon brake contamination, detection of – visual means – damaged carbon, p3
carbon brake contamination, detection of – visual means – debris, p3
carbon brake contamination, detection of – visual means – flaked carbon, p3
carbon brake contamination, detection of – visual means – frayed carbon, p3
carbon brake contamination, detection of – visual means – missing carbon, p3
carbon brake contamination, detection of – visual means – soft carbon, p3
carbon brake contamination, detection of – visual means p3

carbon brake contamination, effects of – brake degradation, p1
carbon brake contamination, effects of – brake failure during aborted takeoff, pp 1–2
carbon brake contamination, effects of – brake failure, pp 1–2
carbon brake contamination, effects of – dragged brake, p1
carbon brake contamination, effects of – overheated brakes, p1

carbon brake contamination, effects of – vibrations, p2
carbon brake inspection frequency, p3
carbon brake rotor inspection, p3
carbon brake stator inspection, p3
carbon brake, sources of contamination – catalyst – alkali metal based RDP, p1
carbon brake, sources of contamination – catalyst – potassium acetate, p1
carbon brake, sources of contamination – catalyst – potassium formate, p1
carbon brake, sources of contamination – catalyst – RDP, p1
potassium acetate. See also alkali organic salts
potassium formate. See also alkali organic salts
RDP – aluminum corrosion, p2
RDP – cadmium corrosion, p2
RDP – catalytic oxidation of carbon brakes, p1
RDP – electrical wire bundle degradation, Kapton® insulated, p2
RDP – electrical wire bundle degradation, p2
RDP – oxidation of carbon brakes, p1
sodium acetate. See also alkali organic salts
sodium formate. See also alkali organic salts

EASA AMC1 ADR.OPS.C010 Pavements, Other Ground Surfaces, and Drainage

Issued 2017 by EASA

This short document recommends to airport operators to maintain the good friction of paved runway. Specifically it recommends to remove dust, sand, oil, rubber deposits as rapidly and as completely as possible.

Keywords:
aprons, s (a)
dust, s (a)
friction, runway, ss (a), (d)
mud, s (a)
pavement, Title
rubber deposits, s (a)
runway friction, ss (a), (d)
sand, s (a)
taxiways, s (a)
Alkali organic salts used in runway deicing products (RDP), catalytically reduce the temperature at which aircraft brakes undergo oxidation. Catalytic oxidation of the carbon brakes discs results in the mechanical and structural degradation of the brakes. This leads to a reduced service life of the brakes and in some instances could result in brake fires or failures. The author recommends that airlines, airports, regulators and legislators engage in discussions to change the current practice of using alkali organic salts to maintain and improve aviation safety.

Keywords:
alkali organic salts – effect on carbon brakes, pp 19–24
carbon brake contamination process, p 19
carbon brake contamination – taxying, p 20
carbon brake contamination – landing, p 20
carbon brake contamination – taking off, p 20
carbon brake contamination, effects of – brake degradation, p 20
carbon brake contamination, effects of – brake fire, p 23
carbon brake contamination, effects of – brake softening, p 20
carbon brake contamination, effects of – debris, p 24
carbon brake contamination, effects of – decreased service life, p 20
carbon brake contamination, effects of – flight cancellation, p 24
carbon brake contamination, effects of – flight delays, p 24
carbon brake contamination, effects of – foreign object damage, p 24
carbon brake contamination, effects of – mechanical degradation, p 20
 carbon brake contamination, effects of – structural degradation, p 20
 carbon brake oxidation, catalytic – alkali metal salt based RDF – significant contribution, p 19
 carbon brake oxidation, catalytic – exposure time to alkali, p 20
 carbon brake oxidation, catalytic – glycol based ADF – insignificant contribution to, p 19
 carbon brake oxidation, catalytic – glycol based RDP – no catalytic oxidation, p 19
 carbon brake oxidation, catalytic – history of, pp 19–20
 carbon brake oxidation, catalytic – mitigation – anti-oxidant brake coatings, p 24
 carbon brake oxidation, catalytic – mitigation – lower application rates for RDP, p 24
 carbon brake oxidation, catalytic – mitigation – lowering of brake temperature, p 24
 carbon brake oxidation, catalytic – mitigation – mechanical snow removal, p 24
 carbon brake oxidation, catalytic – mitigation – proper landing points, p 24
 carbon brake oxidation, catalytic – mitigation – proper touchdown speeds, p 24
 carbon brake oxidation, catalytic – mitigation – use of wheel covers, p 24
 carbon brake oxidation, catalytic – unpredictable rate of oxidation, p 20
 carbon brake oxidation, catalytic – urea RDP – no catalytic oxidation, p 19

carbon brake oxidation, catalytic, p 19
carbon brake oxidation, thermal, p 19
carbon brake, advantages of – better wear, p 20
carbon brake, advantages of – high temperature stability, p 20
carbon brake, advantages of – reuse of worn carbon discs, p 20
carbon brake, sources of contamination – catalyst – alkali metal based RDP, p 19
carbon brake, sources of contamination – catalyst – alkali metal based RDP, p 19
potassium acetate. See also alkali organic salts
potassium formate. See also alkali organic salts
RDP – oxidation of carbon brakes, pp 19–24
RDP – oxidation of carbon brakes, p 1
sodium acetate. See also alkali organic salts
sodium formate. See also alkali organic salts
List of Preferred Words and Expressions

<table>
<thead>
<tr>
<th>Preferred</th>
<th>Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-propanediol</td>
<td>1,3-Propanediol</td>
</tr>
<tr>
<td>aircraft surface coating</td>
<td>aircraft coating</td>
</tr>
<tr>
<td>aircraft</td>
<td>airplane</td>
</tr>
<tr>
<td>airport</td>
<td>aerodrome</td>
</tr>
<tr>
<td>anti-icing code</td>
<td>deicing/anti-icing code</td>
</tr>
<tr>
<td>category specification</td>
<td>detail specification</td>
</tr>
<tr>
<td>cockpit windows</td>
<td>flight deck windows</td>
</tr>
<tr>
<td>cockpit windows</td>
<td>windscreen</td>
</tr>
<tr>
<td>deicing</td>
<td>de-icing</td>
</tr>
<tr>
<td>deicing/anti-icing fluid</td>
<td>de-/anti-icing fluid</td>
</tr>
<tr>
<td>dewpoint</td>
<td>dew point</td>
</tr>
<tr>
<td>diethylene glycol</td>
<td>Diethylene Glycol</td>
</tr>
<tr>
<td>engines-on</td>
<td>engines on</td>
</tr>
<tr>
<td>ethylene glycol</td>
<td>Ethylene Glycol</td>
</tr>
<tr>
<td>flaps and slats</td>
<td>slats and flaps</td>
</tr>
<tr>
<td>flightcrew</td>
<td>cockpit crew</td>
</tr>
<tr>
<td>flightcrew</td>
<td>flight crew</td>
</tr>
<tr>
<td>foundation specification</td>
<td>base specification</td>
</tr>
<tr>
<td>freezing point buffer</td>
<td>buffer</td>
</tr>
<tr>
<td>freezing point buffer</td>
<td>freeze point buffer</td>
</tr>
<tr>
<td>freezing point buffer</td>
<td>freezing point temperature buffer</td>
</tr>
<tr>
<td>freezing point</td>
<td>freeze point</td>
</tr>
<tr>
<td>frost point</td>
<td>frostpoint</td>
</tr>
<tr>
<td>ground crew</td>
<td>ground personnel</td>
</tr>
<tr>
<td>ground crew</td>
<td>groundcrew</td>
</tr>
<tr>
<td>highest on-wing viscosity</td>
<td>maximum on-wing viscosity</td>
</tr>
<tr>
<td>hoarfrost</td>
<td>hoar frost</td>
</tr>
<tr>
<td>HOWV(^{126})</td>
<td>MOWV</td>
</tr>
<tr>
<td>ice, snow and frost</td>
<td>snow, ice and frost</td>
</tr>
<tr>
<td>in-flight (adjective)</td>
<td>in flight</td>
</tr>
<tr>
<td>in-flight ice accretion</td>
<td>impact ice</td>
</tr>
<tr>
<td>infrared</td>
<td>infra-red</td>
</tr>
<tr>
<td>liter</td>
<td>litre</td>
</tr>
<tr>
<td>meter</td>
<td>metre</td>
</tr>
<tr>
<td>pilot-in-command</td>
<td>commander</td>
</tr>
<tr>
<td>pilot-in-command</td>
<td>pilot in command</td>
</tr>
</tbody>
</table>

\(^{125}\) Aerodrome is used in the expression “Terminal Aerodrome Forecast” (TAF).

\(^{126}\) See footnote 5.
<table>
<thead>
<tr>
<th>Term</th>
<th>Correct Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>post deicing/anti-icing check</td>
<td>post application check</td>
</tr>
<tr>
<td>post deicing/anti-icing check</td>
<td>post deicing check</td>
</tr>
<tr>
<td>post deicing/anti-icing check</td>
<td>post-deicing check</td>
</tr>
<tr>
<td>pre-deicing process</td>
<td>pre-deicing step</td>
</tr>
<tr>
<td>pre-deicing process</td>
<td>pre-step</td>
</tr>
<tr>
<td>pretakeoff contamination check</td>
<td>pre takeoff contamination check</td>
</tr>
<tr>
<td>pretakeoff contamination check</td>
<td>pre-takeoff contamination check</td>
</tr>
<tr>
<td>pretakeoff contamination check</td>
<td>pre-takeoff contamination inspection</td>
</tr>
<tr>
<td>pretakeoff</td>
<td>pre takeoff</td>
</tr>
<tr>
<td>pretakeoff</td>
<td>pre-takeoff</td>
</tr>
<tr>
<td>program</td>
<td>programme</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>Propylene Glycol</td>
</tr>
<tr>
<td>rotorcraft</td>
<td>helicopter</td>
</tr>
<tr>
<td>safety data sheet</td>
<td>material safety data sheet</td>
</tr>
<tr>
<td>SDS</td>
<td>MSDS</td>
</tr>
<tr>
<td>service provider</td>
<td>FBO</td>
</tr>
<tr>
<td>takeoff</td>
<td>take off</td>
</tr>
<tr>
<td>takeoff</td>
<td>take-off</td>
</tr>
<tr>
<td>walk-around</td>
<td>walk around</td>
</tr>
</tbody>
</table>
Figure 2 Runway Deicing Documents

- Testing Procedures
 - AIR6130A Cadmium Plate Corrosion Test
 - AIR6170A Ice Melting Method
 - AIR6172A Ice Undercutting Method
 - AIR6211A Ice Penetration Method

- Material Specification
 - AMS1431D Solid RDF
 - AMS1435C Liquid RDP

- Related Specification
 - AIR5490A Carbon Brake Contamination

- Guidance
 - EASA, FAA, Transport Canada, Boeing
Index

References are to page numbers.

1,3-propanediol. See Glycol, Non-conventional – 1,3-propanediol
14 CFR § 121.629, 135, 149
14 CFR § 139, 153
abbreviations, 16
AC 120-112, 151
AC 120-60B, 149
AC 150/5300-14C, 152, 153
ACARS – definition, 95
accident – Air Florida, 21
accident – Dryden, 22
accident – Iberia IB3195 collision at Munich airport, 24
accident – Royal Air Maroc collision at Montreal (Mirabel) airport, 23
accident – USAir Flight 405, 23
accident rate, aircraft ground icing catastrophic, 77
accidents, 21
accidents, aircraft ground icing – categories – collision with deicing vehicle, 23
accidents, aircraft ground icing – categories – detected frozen contamination but ignored, 77
accidents, aircraft ground icing – categories – fluid failure after deicing, 77
accidents, aircraft ground icing – categories – undetected frozen contamination, 77
accidents, aircraft ground icing – categories – undetected frozen contamination after deicing, 77
accidents, aircraft ground icing – historical data, 77
active frost. See frost, active
ADF general description, 164
ADF, spent. See also deicing facility – spent ADF; deicing facility, terminal gate – spent ADF collection; CDF – runoff mitigation – spent ADF;
ADF, spent – use as RDP, 153
adhesion, factors affecting ice crystals/dry snow. See dry snow
Adrian, Philip, 188
advancing contact angle. See contact angle, advancing
AEA recommendations, 112
AEA recommendations – publication discontinuation, 177
aerodynamic acceptance, 37, 50, See also Type II/III/IV aerodynamic acceptance
aerodynamic acceptance – definition, 61, 69
aerodynamic acceptance test, 39
aerodynamic acceptance test – maximum acceptable lift loss for commuter type aircraft with wing mounted propellers (8%), 34
aerodynamic acceptance test – BLDT, 38
aerodynamic acceptance test – BLDT – Bernoulli equation, 38
aerodynamic acceptance test – BLDT – calculation, 38
aerodynamic acceptance test – BLDT, dry – at 35 m/s – 3.3 mm, 38
aerodynamic acceptance test – BLDT, dry – at 65 m/s – 3.0 mm, 38
aerodynamic acceptance test – Boeing history, 34
aerodynamic acceptance test – Bombardier (de Havilland) history, 34
aerodynamic acceptance test – calibration requirements, 38
aerodynamic acceptance test – commuter aircraft, 38
aerodynamic acceptance test – continued acceptance, 38
aerodynamic acceptance test – definition, 164
aerodynamic acceptance test – description of test, 38
aerodynamic acceptance test – development by Boeing, 34
aerodynamic acceptance test – development by de Havilland, 34
aerodynamic acceptance test – facility/site competency, 38
aerodynamic acceptance test – facility/site independence from fluid manufacturer, 38
aerodynamic acceptance test – fluid elimination – Type II/III/IV high speed ramp – 74%, 38
aerodynamic acceptance test – fluid elimination – Type II/III/IV low speed ramp – 57%, 38
aerodynamic acceptance test – fluid formulation change, 38
aerodynamic acceptance test – fluid from licensee, 38
aerodynamic acceptance test – fluid property change, 38
aerodynamic acceptance test – fluid residual thickness – Type I high speed ramp – 600 microns, 38
aerodynamic acceptance test – fluid residual thickness – Type I low speed ramp – 400 microns, 38
aerodynamic acceptance test – general description, 34
aerodynamic acceptance test – high and low speed ramp on Type I and Type III, 34
aerodynamic acceptance test – high speed ramp, 38
aerodynamic acceptance test – high speed ramp – 100 knots, 38
aerodynamic acceptance test – high speed ramp – 2.6 m/s², 38
aerodynamic acceptance test – high speed ramp – 25 s, 38
aerodynamic acceptance test – high speed ramp – acceleration, 38
aerodynamic acceptance test – high speed ramp – compensating measures for turbo prop aircraft, 38
aerodynamic acceptance test – high speed ramp – description, 34
aerodynamic acceptance test – high speed ramp – reference fluid, 38
aerodynamic acceptance test – high speed ramp – speed diagram, 38
aerodynamic acceptance test – high speed ramp on Type II and Type IV, 34
aerodynamic acceptance test – initial testing, 38
aerodynamic acceptance test – large transport jet aircraft, 38
aerodynamic acceptance test – licensee fluid, 38
aerodynamic acceptance test – low speed ramp, 38
aerodynamic acceptance test – low speed ramp – 17 s, 38
aerodynamic acceptance test – low speed ramp – 2.1 m/s², 38
Index

aerodynamic effect of fluids – on corporate jet, small – failure to rotate, 135
aerodynamic effect of fluids – on drag, 35
aerodynamic effect of fluids – on elevator control force, 35, 135
aerodynamic effect of fluids – on elevator effectiveness, 35, 135
aerodynamic effect of fluids – on handling qualities, 35
aerodynamic effect of fluids – on hinge moment, 35
aerodynamic effect of fluids – on lateral control, 35
aerodynamic effect of fluids – on lift decrease, 35
aerodynamic effect of fluids – on Mitsubishi YS-11, 35
aerodynamic effect of fluids – on small corporate jet, small – failure to rotate, 135
aerodynamic effect of fluids – on stick/column forces, 35, 135
aerodynamic effect of fluids – on tab effectiveness, 35, 135
aerodynamic effect of fluids – on turbo-prop aircraft, slow rotation speed – failure to rotate, 135
aerodynamic effect of fluids – performance adjustments, 36. See also Type II/III/IV aircraft operational considerations
aerodynamic effect of fluids – performance adjustments – attitude, 35
aerodynamic effect of fluids – performance adjustments – braking energy, 35
aerodynamic effect of fluids – performance adjustments – pitch rate, 35
aerodynamic effect of fluids – performance adjustments – takeoff distance, 35
aerodynamic effect of fluids – performance adjustments – takeoff flap settings, 35
aerodynamic effect of fluids – performance adjustments – takeoff speeds, 35
aerodynamic effect of fluids – performance adjustments – takeoff technique, 36
aerodynamic effect of fluids – performance adjustments – takeoff weight, 35
aerodynamic effect of fluids – performance adjustments to ensure adequate safety margins, 36
aerodynamic effect of fluids – rotation difficulties on aircraft with unpowered pitch control surfaces, 36
aerodynamic effect of fluids – transitory nature of, 36
aerodynamic effect of fluids – wave roughness introduced by flow-off, 36
aerodynamic effect of fluids on specific aircraft, 36
aerodynamic effect of fluids on specific aircraft (AS6852B) subset of aerodynamic effect of fluids, 36
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – additional requirements beyond AAT, 36
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – different from Boeing 737-200ADV, 36
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – report of high stick forces during rotation, 36
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – report of high wheel forces during rotation, 36
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – rotation speed different from AAT, 36
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – takeoff acceleration different from AAT, 36
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – variation in wing design, 36
aerodynamic effect of fluids on specific aircraft, reasons to evaluate – lift loss caused by fluids, 36
Aerospace Recommended Practice.
Aerospace Material Specification.
Aerospace Information Report. See AIR
Aerospace Standard. See AS
AIP reporting – RDP, 208
AIR, 27
air bubble removal by centrifugation, 59
Air Florida accident, 21
Air Florida Flight 90, 21
air heaters. See frozen contamination, removal of – with air heaters
Air Ontario Flight 1363, 22
air operator (TC) – definition, 164
Air Operator (TC) – definition, 164
air operator certificate (TC) – definition, 164
air stream. See forced air
AIR1335A [to be cancelled], 94
AIR5490A, 197
AIR5567A, 202
AIR5704, 59
AIR6130, 194
AIR6170A, 195
AIR6172, 196
AIR6211A, 197
AIR6232, 31
AIR6284, 103
Airbus, 25
Airbus A300 spray area diagram, 105, 125
Airbus A310 dimensions, 125
Airbus A310 spray area diagram, 105, 125
Airbus A318/319 spray area diagram, 105, 125
Airbus A318/319/320/321 dimension, 126
Airbus A320 spray area diagram, 105, 126
Airbus A321 spray area diagram, 105, 126
Airbus A330 dimensions, 126
aircraft category.

aircraft carbon brake.

aircraft anti-icing fluid.

Airbus AIMS 09-00-002, 31

Airbus A400M spray area diagram, 105, 126

Airbus A380 spray area diagram, 105, 126

Airbus A350 spray area diagram, 105, 126

Airbus A380 dimensions, 126

Airbus A350 dimensions, 126

Airbus A340 spray area diagram, 105, 126

Airbus A340 dimensions, 126

Airbus A330 spray area diagram, 105, 126

aircraft operator – responsibility for management

aircraft operator – responsibility for pilot-in-command, 81

aircraft operator – responsibility for aircraft ground deicing programs, 81

aircraft operator – responsibility for aircraft deicing/anti-icing procedures, 81

aircraft operator – responsibility for management responsibilities, 81

aircraft operator – responsibility for aircraft parking area length, 153

aircraft operator – responsibility for aircraft deicing pad – definition, 153

aircraft operator – responsibility for aircraft right-hand, 126

aircraft skin temperature lower than OAT. See wing temperature lower than OAT

aircraft surface coating, 31

aircraft surface coating – effect on aerodynamic drag, 31

aircraft surface coating – effect on aerodynamic performance, 31

aircraft surface coating – effect on drag, 32

aircraft surface coating – effect on endurance time, 32

aircraft surface coating – effect on frost formation, 32

aircraft surface coating – effect on HOT, 32

aircraft surface coating – effect on ice adhesion, 32

aircraft surface coating – effect on inflight ice accretion, 32

aircraft surface coating – effect on thermal conductivity, 32

aircraft surface coating – effect on Type I, 32

aircraft surface coating – effect on Type II/III/IV, 32

aircraft surface coating – hardness, 32

aircraft surface coating – immersion tests, 32

aircraft surface coating – thickness 1–2 mils, 32

aircraft surface coating – thickness test for Type II/III/IV, 32

aircraft surface coating – wetting test for Type I, 32

aircraft surface coating, after-market, 32

aircraft surface coating, effect of acid rain on, 32

aircraft surface coating, effect of detergents on, 32

aircraft surface coating, effect of hydraulic fluid on, 32

aircraft surface coating, effect of jet fuel on, 32

aircraft surface coating, effect of oxidation on, 32

aircraft surface coating, effect of ozone on, 32

aircraft surface coating, effect of Type I/II/III/IV on, 32

aircraft surface coating, super-hydrophobic – limitation in frost, 32

aircraft surface coating, weathering of, 32

aircraft, turbo-prop high wing – inspection, 136

airfield deicing fluid. See RDP airplane. See aircraft

airport – responsibility for DDF operability, 81

airport – responsibility for fluid logistics airside, 81

airport – responsibility for health and safety, 81

airport – responsibility for message boards, 81

airport – responsibility for weather support, 81

Airport Certification Manual (US), 153

Airport Improvement Program (US), 153

airport, certificated (FAA), 153

airport – responsibility for fluid logistics airside, 81

airport – responsibility for message boards, 81

airport – responsibility for weather support, 81

alkali metal salts. See also Non-glycol

alkali metal salts – effect on carbon brakes, 202

alkali organic salt – effect on carbon brakes, 202

alkali organic salt – effect on carbon brakes, 208

alkali organic salt based Type I – effect on carbon brakes, 202

alkali organic salt – effect on carbon brakes, 208

alkali organic salt based Type I – effect on Type II/III/IV protection time, 61

alkali organic salt based Type I – exclusion from FAA/Transport Canada list of fluids, 61

alkali organic salt based Type I – EASA guidance, 177

alkali organic salt based Type I – FAA guidance, 136

alkali organic salt based Type I – HOT – invalid, 61

alkali organic salt based Type I – TC guidance, 157

alkali organic salts – aircraft maintenance program, 208

alkali organic salts – catalyst for carbon brake oxidation, 202

alkali organic salts – corrosion of electrical connectors, 188

alkali organic salts – corrosion of hydraulic system components, 188

alkali organic salts – effect on aluminum, 208

alkali organic salts – effect on cadmium, 208

alkali organic salts – effect on carbon brakes, 188, 208, 211

alkali organic salts – effect on carbon brakes, 202
alkali organic salts – effect on Kapton insulation, 208
alkali organic salts – effect on landing gear, 208
alkali organic salts – effect on wire bundles, 208
alkali organic salts – oxidation of carbon brakes, 208
allowance time, 136, See also wind tunnel testing
allowance time – definition, 61, 69
allowance time – EG v PG Type IV based fluids, 145, 157
allowance time – extension time, 157
allowance time – failure mode – aerodynamic and visual, 62, 69
allowance time – precipitation stops, when, 136, 145, 157
allowance time – pretakeoff contamination check not required, 136
allowance time – pretakeoff contamination check useless, 136
allowance time – pretakeoff contamination inspection not required, 136
allowance time – rotation speed 100 knots minimum – Type III fluids, 145, 157
allowance time – rotation speed 100 knots minimum – Type IV EG fluids, 146, 157
allowance time – rotation speed 115 knots minimum – Type IV PG fluids, 146, 157
allowance time – temperature decreasing, 136, 146, 157
allowance time – temperature increasing, 136, 157
allowance time – temperature stable, 136, 157
allowance time – wind tunnel testing, 62
allowance time for METAR code GS. See METAR Code GS; METAR code GS, interpretation of
allowance time for METAR code SHGS in Canada, 136
allowance time guidance (FAA), 136
allowance time, 76% adjusted – flaps and slats deployed, 136, 146, 158
allowance time, 76% adjusted – guidance (FAA), 136
allowance time, end of, 158
allowance time, extension – with pretakeoff contamination check – none, 136
allowance time, extension – with pretakeoff contamination inspection – none, 136
allowance time, extension of – none, 158
allowance time, preparation of Type II/IV – sample selection, 69
allowance time, preparation of Type III/IV – precipitation categories – ice pellets and small hail, 69
allowance time, preparation of Type III/IV – precipitation categories – mixed ice pellets, 69
allowance time, purpose of, 136
allowance time, start of, 136, 158
allowance time, Type I – none, 62, 136, 158
allowance time, Type II – none, 62, 136, 158
allowance time, Type III neat, 136, 146, 158
allowance time, Type III unheated, 136, 146, 158
allowance time, Type IV neat, 136, 146, 158
allowance time, Type IV undiluted, 136
AMIL, 74, 146, 158
AMIL gel residue tables, 69
AMS, 27
AMS1424 – performance v composition of matter specification, 42
AMS1424 – TC recognized, 164
AMS1424, purpose of – minimum requirements for Type I, 62
AMS1424/1, 42, 48, 50, 57
AMS1424/1, purpose of – identity of freezing point depressant, 62
AMS1424/2, 42, 48, 50, 57
AMS1424/2, purpose of – identity of freezing point depressant, 62
AMS1424N, 41, 49
AMS1428 – performance v composition of matter specification, 50
AMS1428 – TC recognized, 164
AMS1428, purpose of – minimum requirements for Type II/IV fluids, 69
AMS1428/1, 57
AMS1428/1, purpose of – identity of freezing point depressant, 69
AMS1428/2, 58
AMS1428/2, purpose of – identity of freezing point depressant, 69
AMS1428J, 49
AMS1431 RDP ice melting test. See RDP ice melting test
AMS1431 RDP ice penetration test. See RDP ice penetration test
AMS1431 RDP ice undercutting test. See RDP ice undercutting test
AMS1431D, 191
AMS1435 RDP ice melting test. See RDP ice melting test
AMS1435 RDP ice penetration test. See RDP ice penetration test
AMS1435 RDP ice undercutting test. See RDP ice undercutting test
AMS1435C, 193
AMS1448B, 205
analyses, 35
angle of attack, flow separation at high, 174
angle of attack, flow separation at low, 174
angle, contact. See contact angle
angle, roll-off. See roll-off angle
angle, sliding. See sliding angle
anti-icing, 81
anti-icing – definition, 77, 81, 105, 149, 164, 174, 181
anti-icing code, 81, 93, 149, 178, 179, 181, 186
anti-icing code – definition, 81, 181
anti-icing fluid – definition, 81, 105, 151, 158, 172, 178
anti-icing fluid – protection time, limited, 158
anti-icing performance – HHET and WSET, 39
anti-icing procedure. See fluid application; fluid application, anti-icing
anti-icing truck. See deicing unit
antioxidant (AO) treatments, 198
Antonov AN-12 dimensions, 126
Antonov AN-124 dimensions, 126
Antonov AN-70 dimensions, 126
Antonov AN-74/AN-74T dimensions, 126
AOS. See alkali organic salt
application equipment. See deicing unit
apron – definition, 164
apron deicing product. See RDP
aprons, 209
APS Aviation, 29, 74, 145, 158
APU fluid ingestion, 126, 164
APU glycol ingestion, 126, 164
area, wetted – definition, 126
ARP, 27
ARP1971C, 101
ARP4737H, 29, 81
ARP4902B, 97
ARP5058A, 104
ARP5149B, 29, 105
ARP5149BDA, 111
ARP5485A, 11
ARP5485B, 74
ARP5646, 29, 112
ARP5660A, 95
ARP5718A, 11
ARP5718B, 68
ARP5945A, 65
ARP6257, 29
ARP6257, 93
ARP6852B, 34
Arriaga, Michael, 188, 211
AS, 27
AS5537, 93
AS5635, 99
AS5681B, 77
AS5900C, 37
AS5901C, 39
AS6285, 29, 81
AS6286, 29, 114
AS6286/1, 29, 116
AS6286/2, 29, 119
AS6286/3, 29, 120
AS6286/4, 29, 122
AS6286/5, 29, 124
AS6286/6, 29, 125
AS6332, 29, 129
AS9100, 129
AS9968, 58
Association of European Airlines. See AEA
ATC – responsibilities, 81
ATC winter operations plan, 181
ATC winter operations plan – flow through rate, 181
ATC winter operations plan – in controller’s manual, 181
ATC winter operations plan – shortest taxi time, 181
ATOS, 136
ATR ATR42/AT72 spray area diagram, 105
ATR ATR42/ATR72 dimensions, 126
ATR ATR42/ATR72 spray area diagram, 126
audit, 129
audit – definition, 112
audit – documented procedure, 129
audit checklist, 113
audit checklist – airline personnel access to deicing site, 112
audit checklist – availability of ground deicing program manuals, 112
audit checklist – availability of the latest version of the deicing standards, 112
audit checklist – deicing unit – fixed, 113
audit checklist – deicing unit – forced air, 113
audit checklist – deicing unit – infrared, 113
audit checklist – deicing unit – mobile, 113
audit checklist – deicing unit – other, 113
audit checklist – deicing unit anomalies, 113
audit checklist – deicing unit communication systems, 113
audit checklist – deicing unit labelling, 113
audit checklist – deicing unit maintenance, 113
audit checklist – deicing unit, compliance with current standards, 113
audit checklist – deicing unit, in-unit fluid mixing, 113
audit checklist – fluid check documentation, 113
audit checklist – fluid delivery documentation, 113
audit checklist – fluid temperature, verification of maximum, 113
audit checklist – fluid transfer system, compliance with fluid manufacturer recommendation, 113
audit checklist – identification of the deicing standards, 113
audit checklist – list of available fluids, 113
audit checklist – responsibility for access to current manuals, 113
audit checklist – responsibility for adequate facilities and equipment, 113
audit checklist – responsibility for availability of Type I/II/III/IV fluids, 113
audit checklist – responsibility for coordination with ATC, 113
audit checklist – responsibility for duties, instructions and procedures, 113
audit checklist – responsibility for ground crew management plan, 113
audit checklist – responsibility for ground operations management plan, 113
audit checklist – responsibility for storage and handling, 113
audit checklist – responsibility for sufficiency of ground crews, 113
audit checklist – sampling procedure, 113
Index

audit checklist – sampling procedure for nozzle samples, 113
audit checklist – storage capacity, 113
audit checklist – storage compliance with fluid manufacturer recommendations, 113
audit checklist – storage periodic checks, 113
audit checklist – training manuals, 113
audit checklist – training manuals, compliance with current regulations, 113
audit checklist – training manuals, compliance with current standards, 113
audit checklist – training practical assessment, 113
audit checklist – training programs revisions, documentation of, 113
audit checklist – training records verification, 113
audit checklist – training success standard, 113
audit checklist – training test, 113
audit checklist – training, recurrent, 113
audit comments, 113
audit corrective action, 113
audit data, 113
audit evidence – definition, 129
audit findings, 113
audit findings – minor, 113
audit findings – safety, 113
audit interval, 113
audit of airline, 113
audit of airport, 114
audit of ground handling provider, 114
audit of service provider, 114
audit pool, 81
audit results, 114, 129
audit standard – AEA Recommendations, 114
audit standard – ARP4737, 114
audit standard – ISO11076, 114
audit standard – other, 114
audit, external, 129
audit, internal, 129
auditor, 114, 129
auditor – impartiality, 129
auditor – objectivity, 129
auditor – shall not audit their own work, 129
automated surface observing system. See ASOS
Avro RJ dimensions, 126
Avro RJ spray area diagram, 126
BAe 146/Avro RJ dimensions, 126
BAe 146/Avro RJ spray area diagram, 105, 126
BAe 748/HS 748 spray area diagram, 126
BAe ATP dimensions, 126
BAe Jetstream 31 dimensions, 126
BAe Jetstream 41 spray area diagram, 126
BAe Jetstream 41 dimensions, 126
BAe Jetstream JS31/JS41 spray area diagram, 105
basket. See deicing unit – basket
Beech 1900D dimensions, 126
Beech Beechjet 400A dimensions, 126
Beech King Air 350 dimensions, 126
Beech King Air B200 dimensions, 126
Beech King Air C90B/C90SE dimensions, 126
Beechcraft B1900 spray area diagram, 105, 126
BFU, 25
biochemical oxygen demand. See BOD
biodegradation, effects of, 164
BLDT. See aerodynamic acceptance test – BLDT
bleed-through. See color bleed-through
Boeing, 25, 211
Boeing – aerodynamic acceptance test history, 36
Boeing B707 dimensions, 126
Boeing B717 dimensions, 126
Boeing B717 spray area diagram, 105, 126
Boeing B727 dimensions, 126
Boeing B727 spray area diagram, 105, 126
Boeing B737 dimensions, 126
Boeing B737 spray area diagram, 105, 126
Boeing B737 wingtip devices, 136, 158
Boeing B737-200 ADV – aerodynamic acceptance test, 36
Boeing B737-600/700/800/900 – cold soaked fuel frost – exemption process (FAA), 136
Boeing B747 dimensions, 126
Boeing B747 spray area diagram, 105, 126
Boeing B747 wingtip devices, 136, 158
Boeing B757 dimensions, 126
Boeing B757 spray area diagram, 105, 126
Boeing B757 wingtip devices, 136, 158
Boeing B767 dimensions, 126
Boeing B767 spray area diagram, 105, 127
Boeing B767 wingtip devices, 136, 158
Boeing B777 dimensions, 127
Boeing B777 spray area diagram, 105, 127
Boeing B787 dimensions, 127
Boeing B787 spray area diagram, 106, 127
Boeing C-17 dimensions, 127
Boeing C-17 spray area diagram, 106, 127
Boeing D6-17487, 32
Boeing Douglas DC-8 dimensions, 127
Boeing Douglas DC-8 spray area diagram, 127
Boeing McDonnell Douglas DC-10/MD-10/MD-11 dimensions, 127
Boeing McDonnell Douglas DC-10/MD-10/MD-11 spray area diagram, 127
Boeing McDonnell Douglas DC-9 dimensions, 127
Boeing McDonnell Douglas DC-9 spray area diagram, 127
Boeing McDonnell Douglas MD-80/MD-90 dimensions, 127
Boeing McDonnell Douglas MD-80/MD-90 spray area diagram, 127
Boeing MD11 wingtip devices, 136, 158
Bombardier. See also aerodynamic effect of fluids – evaluation by Bombardier
Bombardier (de Havilland) – aerodynamic acceptance test history, 36
Bombardier 130-100 Continental dimensions, 127
Bombardier Challenger CL600 dimensions, 127
Bombardier CL 100/200 dimensions, 127
Bombardier CRJ dimensions, 127
Bombardier DHC-8, 36
Bombardier Global Express dimensions, 127
Bombardier Global Express spray area diagram, 106, 127
Bombardier Shorts 330 spray area diagram, 127
boom. See deicing unit – boom
boundary layer displacement thickness. See BLDT
Brix, 42, 50, 164
Brookfield LV viscometer. See viscometer, Brookfield LV
brooms. See frozen contamination, removal of – with
brushes. See frozen contamination, removal of – with
Buehler test, 50
buffer. See freezing point buffer
cabin windows. See windows, cabin
cadmium plate corrosion – reporting requirement, 191
cadmium plate corrosion by RDP, 193
cadmium plate corrosion by RDP – reporting requirement,
193
cadmium plate cyclic corrosion test, 194
cadmium plate cyclic corrosion test – AMS1431 sample,
195
cadmium plate cyclic corrosion test – AMS1435 sample,
195
cadmium plate cyclic corrosion test – cleaning of test
specimens, 195
cadmium plate cyclic corrosion test – criterion for
undesirable corrosion effects, 195
cadmium plate cyclic corrosion test – gravimetric results,
195
cadmium plate cyclic corrosion test – procedure, 195
cadmium plate cyclic corrosion test – RDP sample, 195
cadmium plate cyclic corrosion test – sample preparation,
195
cadmium plate cyclic corrosion test – test coupons, 195
cadmium plate cyclic corrosion test – test results, 195
cadmium plate cyclic corrosion test – test specimen, 195
cadmium plated aircraft parts – RDP caused corrosion, 195
cadmium plated aircraft parts corrosion test. See cadmium
plate cyclic corrosion test
Canada Labour Code – mandatory compliance, 164
Canadair RJ100/200 spray area diagram, 106, 127
Canadair RJ700/900/1000 spray area diagram, 106, 127
Canadian Aviation Regulations, 164
carbon brake – definition, 198
carbon brake antioxidant treatment – barrier coating, 198
carbon brake antioxidant treatment – barrier coating, self-
healing, 198
carbon brake antioxidant treatment – chemical vapor
infiltration, 198
carbon brake antioxidant treatment – densification of the
polyacrylonitrile fibers, 198
carbon brake antioxidant treatment – disk soaking, 198
carbon brake antioxidant treatment – oxidation inhibitor,
198
carbon brake antioxidant treatment – oxidation inhibitor,
phosphate based, 198
carbon brake antioxidant treatment – oxidation resistance
of the carbon, 198
carbon brake antioxidant treatment – phosphate solution,
198
carbon brake antioxidant treatment – porosity of the
carbon, 198
carbon brake antioxidant treatment, generic, 202
carbon brake catalytic oxidation, 198
carbon brake contamination – decontamination method,
198
carbon brake contamination – landing, 211
carbon brake contamination – prevention – phosphate
solutions, 198
carbon brake contamination – taking off, 211
carbon brake contamination – taxiing, 211
carbon brake contamination and oxidation, 197
carbon brake contamination – effects of humidity on friction
coefficent of contaminated brakes, 198
carbon brake contamination process, 206, 207, 208, 211
carbon brake contamination, detection of –
chromatography, 198
carbon brake contamination, detection of – conductivity
measurement, 199
carbon brake contamination, detection of – discoloration, 199
carbon brake contamination, detection of – hardness
probes, with, 199
carbon brake contamination, detection of – odor, 199
carbon brake contamination, detection of – off-aircraft
inspection, 199
carbon brake contamination, detection of – on-aircraft
inspection, 199
carbon brake contamination, detection of – smoke, 199
carbon brake contamination, detection of – spectrometry, 199
carbon brake contamination, detection of – staining, 199
carbon brake contamination, detection of – visual means,
199, 206, 207, 209
carbon brake contamination, detection of – visual means –
carbon chips, 206, 207, 208
carbon brake contamination, detection of – visual means –
crushed carbon, 206, 207, 208
carbon brake contamination, detection of – visual means –
damaged carbon, 206, 207, 209
carbon brake contamination, detection of – visual means –
debris, 206, 209
carbon brake contamination, detection of – visual means –
flaked carbon, 206, 207, 209
carbon brake contamination, detection of – visual means –
frayed carbon, 206, 209
carbon brake contamination, detection of – visual means –
missing carbon, 206, 207, 209
carbon brake contamination, detection of – visual means –
soft carbon, 206, 207, 209
carbon brake contamination, effects of, 199
carbon brake contamination, effects of – aircraft runway
over-runs, 199
carbon brake contamination, effects of – brake degradation,
207, 209, 211
carbon brake contamination, effects of – brake disk lug
rupture, 199
carbon brake contamination, effects of – brake failure, 206,
207, 209
carbon brake contamination, effects of – brake failure
during aborted takeoff, 206, 207, 209
carbon brake contamination, effects of – brake fire, 211
carbon brake contamination, effects of – brake overheating,
199
carbon brake contamination, effects of – brake softening,
211
carbon brake contamination, effects of – brake wear, 199
Index

carbon brake contamination, effects of – catalytic oxidation, 199

carbon brake contamination, effects of – complete loss of braking capability, 199

carbon brake contamination, effects of – debris, 211

carbon brake contamination, effects of – decreased service life, 188, 211

carbon brake contamination, effects of – dragged brake, 206, 207, 209

carbon brake contamination, effects of – flight cancellation, 211

carbon brake contamination, effects of – flight delays, 211

carbon brake contamination, effects of – foreign object damage, 211

carbon brake contamination, effects of – friction coefficient, increase and decrease, 199

carbon brake contamination, effects of – increased aircraft braking distance in rejected takeoff, 199

carbon brake contamination, effects of – loss in braking performance, 199

carbon brake contamination, effects of – loss of brake disk reuse capability, 199

carbon brake contamination, effects of – loss of friction area, 199

carbon brake contamination, effects of – loss of mechanical strength, 199

carbon brake contamination, effects of – loss of rubbed area, 199

carbon brake contamination, effects of – mass loss, 199

carbon brake contamination, effects of – mechanical degradation, 211

carbon brake contamination, effects of – over heating of other brakes, 199

carbon brake contamination, effects of – overheated brakes, 206, 207, 209

carbon brake contamination, effects of – partial loss of braking capability, 199

carbon brake contamination, effects of – premature brake removal, 199

carbon brake contamination, effects of – runway over-runs, 199

carbon brake contamination, effects of – structural brake disc failure, 199

carbon brake contamination, effects of – structural degradation, 211

carbon brake contamination, effects of – temporary or permanent change in friction level, 199

carbon brake contamination, effects of – torque reduction, 199

carbon brake contamination, effects of – uneven braking, 199

carbon brake contamination, effects of – vibration, squeal, 199

carbon brake contamination, effects of – vibration, whirl, 199

carbon brake contamination, effects of – vibrations, 199, 206, 207, 209

carbon brake contamination, prevention of – use of wheel covers, 199

carbon brake degradation, 199

carbon brake friction and wear modifier – definition, 199

carbon brake inspection, 199

carbon brake inspection frequency, 206, 207, 209

carbon brake operating temperature v steel brake operating temperature, 199

carbon brake oxidation, 200

carbon brake oxidation – catalysis by alkali salts, 202

carbon brake oxidation – catalysis by RDP, 202

carbon brake oxidation – oxidation effects v cumulative thermal load, 199

carbon brake oxidation – reporting requirement, 191

carbon brake oxidation by RDP, 193

carbon brake oxidation temperature in absence of contamination [ca 400 °C], 199

carbon brake oxidation test method, 202

carbon brake oxidation test method – antioxidant formulation, generic, 202

carbon brake oxidation test method – antioxidant application of, 202

carbon brake oxidation test method – coupon selection, 202

carbon brake oxidation test method – coupon oxidation procedure, 202

carbon brake oxidation test method – mean normalized carbon weight loss %, 202

carbon brake oxidation test method – potassium acetate normalized results, 202

carbon brake oxidation test method – potassium formate normalized results, 202

carbon brake oxidation test method – RDP application to coupon, 202

carbon brake oxidation test method – round robin testing, 202

carbon brake oxidation test method – sodium acetate normalized results, 202

carbon brake oxidation test method – test result for liquid RDP, 202

carbon brake oxidation test method – test result for solid RDP, 202

carbon brake oxidation test method – test results, 202

carbon brake oxidation test method – test temperature (550 °C), 202

carbon brake oxidation test method – test time (24 h), 202

carbon brake oxidation test method – urea normalized results, 202

carbon brake oxidation test method – weight loss %, mean normalized, 202

carbon brake oxidation threshold limit – not possible to measure, 202

carbon brake oxidation, catalytic, 212

carbon brake oxidation, catalytic – alkali metal salt based RDF – significant contribution, 211

carbon brake oxidation, catalytic – exposure time to alkali, 211

carbon brake oxidation, catalytic – glycol based ADF – insignificant contribution to, 211

carbon brake oxidation, catalytic – glycol based RDP – no catalytic oxidation, 211

carbon brake oxidation, catalytic – history of, 211

carbon brake oxidation, catalytic – mitigation – antioxidant brake coatings, 211
carbon brake oxidation, catalytic – mitigation – lower application rates for RDP, 211
carbon brake oxidation, catalytic – mitigation – lowering of brake temperature, 211
carbon brake oxidation, catalytic – mitigation – mechanical snow removal, 211
carbon brake oxidation, catalytic – mitigation – proper landing points, 211
carbon brake oxidation, catalytic – mitigation – proper touchdown speeds, 211
carbon brake oxidation, catalytic – mitigation – use of wheel covers, 211
carbon brake oxidation, catalytic – unpredictable rate of oxidation, 211
carbon brake oxidation, catalytic – urea RDP – no catalytic oxidation, 211
carbon brake oxidation, effect of. See also carbon brake contamination, effects of
carbon brake oxidation, effect of – mass change, 202
carbon brake oxidation, effect of – weight loss, 202
carbon brake oxidation, factors influencing – aircraft deicing fluids, 199
carbon brake oxidation, factors influencing – airline route structure, 199
carbon brake oxidation, factors influencing – airport selection of RDP, 199
carbon brake oxidation, factors influencing – alcohols based RDP, 199
carbon brake oxidation, factors influencing – alkali metal acetate based RDP, 199
carbon brake oxidation, factors influencing – alkali metal formate based RDP, 199
carbon brake oxidation, factors influencing – ambient temperature, 200
carbon brake oxidation, factors influencing – antioxidant coatings, 200
carbon brake oxidation, factors influencing – antioxidant treatment, 200
carbon brake oxidation, factors influencing – brake wear, 200
carbon brake oxidation, factors influencing – cleaners, 200
carbon brake oxidation, factors influencing – cooling air, 200
carbon brake oxidation, factors influencing – cooling ducts in wheel bay, 200
carbon brake oxidation, factors influencing – cooling fans, 200
carbon brake oxidation, factors influencing – energy absorbed during braking, 200
carbon brake oxidation, factors influencing – length of winter, 200
carbon brake oxidation, factors influencing – mass of carbon heat sink, 200
carbon brake oxidation, factors influencing – number of landings per overhaul, 200
carbon brake oxidation, factors influencing – number of thermal cycles, 200
carbon brake oxidation, factors influencing – peak temperature, 200
carbon brake oxidation, factors influencing – peak temperature, time at, 200
carbon brake, sources of contamination – catalyst – sodium from cleaning agent, 200
carbon brake, sources of contamination – catalyst – sodium from sea water, 200
carbon brake, sources of contamination – catalyst – sodium hypochlorite, 200
carbon brake, sources of contamination – catalyst – temperature indicating crayon marks, 200
carbon brake, sources of contamination – catalytic agents, 200
carbon brake, sources of contamination – cleaning solvents, 200, 201
carbon brake, sources of contamination – disinfectants, 200, 201
carbon brake, sources of contamination – fire extinguishing agent, 201
carbon brake, sources of contamination – formate v acetate, 201
carbon brake, sources of contamination – hydraulic fluid leaks, 201
carbon brake, sources of contamination – hydraulic system servicing, 201
carbon brake, sources of contamination – RDP, 201
carbon brake, sources of contamination – sea water, 201
carbon brake, sources of contamination – temperature indicator crayon marks, 201
carbon friction material, 201
Cassie state. See state, Cassie
catalytic oxidation – definition, 201
category specification, 48, 57, 58
category, aircraft, 127
CBT. See training, computer based
CDF. See also deicing facility, See also DDF
cDF – common deicing procedures for all users, 153
cDF – common deicing procedures– safety benefits, 153
cDF – definition, 95, 153, 164
cDF air traffic control tower line-of-sight, 153
cDF aircraft access routes, 153
cDF approval (TC), 164
cDF benefits – avoiding changing weather along long taxiing routes, 153
cDF benefits – improved airfield flow, 153
cDF benefits – reduced taxiing time, 153
cDF benefits – retreatment near departure runway, 153
cDF capacity, 153
cDF components – bypass taxiing capability for aircraft not needing deicing, 153
cDF components – control enter, 153
cDF components – crew shelter, 153
cDF components – deicing pads, 153
cDF components – deicing unit, 153
cDF components – environmental runoff mitigation, 153
cDF components – fluid storage and handling, 153
cDF components – lighting system, 153
cDF control center, 153
cDF deicing pad, factors affecting number of, 153
cDF deicing pad, factors affecting number of – deicing procedure, 153
cDF deicing pad, factors affecting number of – peak hour departure rate, 153
cDF deicing pad, factors affecting number of – preflight inspection, 153
CDF deicing pad, factors affecting number of – type of aircraft, 153
CDF deicing pad, factors affecting number of – type of deicing units, 153
CDF deicing pad, factors affecting number of – variation in meteorological conditions, 153
CDF environmental considerations. See also CDF runoff mitigation
CDF environmental considerations – receiving water aquatic communities quality, 153
CDF environmental considerations – receiving water quality, 153
CDF holding bays, 154
CDF location and sizing, factors affecting, 154
CDF location and sizing, factors affecting – aircraft type fleet mix, 154
CDF location and sizing, factors affecting – airport layout, 154
CDF location and sizing, factors affecting – airport safety programs, 154
CDF location and sizing, factors affecting – deicing queues, 154
CDF location and sizing, factors affecting – environmental considerations, 154
CDF location and sizing, factors affecting – HOT and time to takeoff clearance time, 154
CDF location and sizing, factors affecting – lighting, 154
CDF location and sizing, factors affecting – restriction of type of deicing fluid, 154
CDF location and sizing, factors affecting – taxing times and routes, 154
CDF location and sizing, factors affecting – topography, 154
CDF location and sizing, factors affecting – type of deicing fluids used, 154
CDF location and sizing, factors affecting – type of deicing unit, 154
CDF location and sizing, factors affecting – utilities, 154
CDF operational issues, 154
CDF pavement requirements, 154
CDF program (TC), 164
CDF requirements (TC), 164
CDF runoff mitigation, 154
CDF runoff mitigation – anaerobic biochemical reactor, 154
CDF runoff mitigation – biomass, 154
CDF runoff mitigation – BOD, 154
CDF runoff mitigation – COD, 154
CDF runoff mitigation – diversion boxes, 154
CDF runoff mitigation – flow rate limits, 154
CDF runoff mitigation – lifecycle cost, 154
CDF runoff mitigation – oil and grease, 154
CDF runoff mitigation – pH, 154
CDF runoff mitigation – POTW (US), 154
CDF runoff mitigation – recycled water, 154
CDF runoff mitigation – recycling system, 154
CDF runoff mitigation – runoff control at the source, 154
CDF runoff mitigation – spent ADF detention basins, 154
CDF runoff mitigation – spent ADF storage tanks, 154
CDF runoff mitigation – TOC, 154
CDF runoff mitigation – total suspended solids, 154
CDF runoff mitigation – urea algae blooms, 154
CDF runoff mitigation – wildlife management, 154
CDF safety risk management mandatory before construction (FAA), 154
CDF separation standards, 154
CDF service provider, single, 154
CDF siting, 154
CDF snow desk, 154
CDF subset of DDF, 95
CDF super set of remote deicing facility, 154
CDF vehicle safety zone, 154
CDF vehicle service roads, 154
CDF, design of, 154
CDF, role of, 155
CDF vehicle safety zone, 154
CDF runoff mitigation – wildlife management, 154
check, tactile – hard wing aircraft with aft-mounted jet engine, 136
check, tactile – to distinguish individual ice pellets in fluid from adhering ice pellets, 136
check, tactile – to distinguish individual ice pellets in fluid from slush, 136
check, tactile – mandatory – removal of frozen contamination with brooms, 158
check, tactile – symmetrical, 164
check, tactile – tactile wand, with, 164
check, tactile – clear ice detection, 82, 164
check, tactile – to distinguish individual ice pellets in fluid
check, tactile – mandatory – removal of frozen contamination with brooms, 158
check, tactile – symmetrical, 164
check, tactile – tactile wand, with, 164
check, tactile – to distinguish individual ice pellets in fluid from adhering ice pellets, 136
check, tactile – to distinguish individual ice pellets in fluid from slush, 136
check, tactile approved (FAA) – in heavy snow, 136
check, visual approved (FAA) – in heavy snow, 136
Civil Aviation Administration of China, 25
clean aircraft concept, 82, 129, 188
clean aircraft concept – aerodynamically clean aircraft, 188
clean aircraft concept – definition, 129, 164, 181
clean aircraft concept – derived from FAR 121.629, 188
clean condition, 82
clean condition – air conditioning exits, 188
clean condition – air conditioning inlets, 188
clean condition – air conditioning inlets and outlets, 82
clean condition – air conditioning pressure-release valves, 82
clean condition – angle of attack sensors, 82
clean condition – APU air inlets, 188
clean condition – brake assemblies, 188
clean condition – cockpit windows, 82, 188
clean condition – control surfaces, 82, 188
clean condition – critical surfaces, 82
clean condition – engine control system probes, 82
clean condition – engine cooling intakes, 82
clean condition – engine exhaust, 82
clean condition – engine fan blades, 82
clean condition – engine inlets, 82, 188
clean condition – engine intake, 82
clean condition – engine leading edge, 82
clean condition – engine ports, 82
clean condition – engine spinner cones, 82
clean condition – fuel tank vents, 82, 188
clean condition – fuselage, 82
clean condition – fuselage – presence of frost, 82
clean condition – girt bar area (before closing door), 188
clean condition – horizontal stabilizer, 82
clean condition – landing gear, 82
clean condition – landing gear doors, 82, 188
clean condition – landing gear truck beam, 188
clean condition – leading edge devices, 188
clean condition – main gear, 188
clean condition – nose, 82
clean condition – nose gear, 82
clean condition – outflow valves, 82
clean condition – passenger doors, 188
clean condition – pitot probes, 188
clean condition – pitot tubes, 82
clean condition – propellers, 82
clean condition – radome, 82
clean condition – rudder, 82
clean condition – sensor, 82
clean condition – sensor – angle of attack, 82
clean condition – sensor – temperature, 82
clean condition – sensors near heated windows, 82
clean condition – static ports, 82, 188
clean condition – tail, 82
clean condition – tail, horizontal, 188
clean condition – tail, vertical, 188
clean condition – vertical stabilizer, 82
clean condition – wheel bays, 82
clean condition – window caution, heated, 82
clean condition – window, cockpit, 82
clean condition – wing upper surface, 188
clean condition – wings, 82
clean condition – wingtip devices, 82
cleaning solvent – definition, 201
clear ice, 181
clear ice – definition, 77, 106, 122, 164, 178
clear ice occurrence – inflight, 77
clear ice occurrence – on the ground, 77
clear ice, cold soaked – definition, 83
clear ice, conditions conducive to, 83, 106, 116, 122, 178
clear ice, detection of, 83, 106, 116, 179
clear ice, detection of – in engine inlets, 137
clear ice, detection of – in engine inlets by ROGIDS, 136
clear ice, detection of – ROGIDS, 77
clear ice, detection of – ROGIDS as supplement to tactile pre-deicing check, 77
clear ice, detection of – ROGIDS as supplement to visual pre-deicing check, 77
clear ice, detection of – ROGIDS detection threshold, 77
clear ice, detection of – ROGIDS v tactile check, 77
clear ice, detection of – ROGIDS v visual check, 77
clear ice, difficulty to detect, 77, 83, 116, 164, 181
clear ice, effect of, 164
clear ice, formation of, 164
clear ice, undetected – probability estimate, 77
coating, aircraft surface. See aircraft surface coating
cold front. See front, cold
cold soaked clear ice – definition, 83
cold soaked effect – definition, 83, 181
cold soaked fuel frost. See frost, cold soaked fuel
cold soaked fuel frost – definition, 83
cold soaked stabilizer, 83
cold soaked wing, 83
cold soaked wing – definition, 106
cold soaked wing ice/frost – definition, 83
cold soaking, 165
cold soaking – definition, 83, 122, 164, 174
cold soaking – fuel caused, 83, 122
cold soaking – reason for above freezing HOT, 174
cold soaking, conditions affecting, 181
cold soaking, conditions conducive to, 122
cold soaking, fueling, 122
cold soaking, refueling, 122
collision with aircraft, deicing unit, 165
color bleed-through – definition, 69
color bleed-through, evaluation of, 69
color intensity, evaluation of – field spray test, 62, 69
color uniformity, 42
color, Type I – orange, 42
color, Type II – yellow, 50
color, Type III – bright yellow, 50
color, Type IV – green, 50
colorless. See Type II/III/IV – colorless, See also Type I – colorless
combustion heaters – asphyxiation danger in poorly ventilated areas, 83
commander. See pilot-in-command
common fluid, 97
communication methodology, 165
communication plan, 165
communication procedure, 165
communication responsibilities, 165
communication training, 165
communication with flightcrew – absence of flightcrew at time of deicing, 83, 137
communication with flightcrew – ACARS, 83
communication with flightcrew – after deicing/anti-icing, 83
communication with flightcrew – aircraft configuration confirmation, 93, 187
communication with flightcrew – all clear signal, 83, 93, 187
communication with flightcrew – anti-icing code, 83, 93, 187
communication with flightcrew – before starting deicing/anti-icing, 83, 93, 187
communication with flightcrew – CDF, 83
communication with flightcrew – DDF, 83
communication with flightcrew – deicing unit proximity sensor activation, 83, 93, 187
communication with flightcrew – electronic flight bag, 83
communication with flightcrew – emergency, 93, 187
communication with flightcrew – engines-on, 83
communication with flightcrew – English language, 83
communication with flightcrew – flight interphone, 83
communication with flightcrew – fluid Type, 187
communication with flightcrew – frost removal with Type I in non-active frost, 83
communication with flightcrew – frost, local, 83
communication with flightcrew – hand signals, 83
communication with flightcrew – HOT, start of, 187
communication with flightcrew – interrupted operations, 93, 187
communication with flightcrew – interruption of deicing/anti-icing, 83
communication with flightcrew – message boards, 83
communication with flightcrew – off-gate, 83
communication with flightcrew – phraseology, 83, 93
communication with flightcrew – phraseology, need for standard, 93
communication with flightcrew – post deicing/anti-icing check completion, 83, 93, 187
communication with flightcrew – printed forms, 83
communication with flightcrew – proximity sensor activation, 83, 93, 187
communication with flightcrew – scripts, 83
communication with flightcrew – verbal, precedence of, 83
communication with flightcrew – VHF, 83
communications, 83, 165, See also anti-icing code; phraseology
communications – flightcrew/cabin crew, 165
communications – service provider responsibilities, 165
communications from passengers, 165
compatibility, fluid. See fluid compatibility – Type I with Type II/III/IV
computer based deicing simulator – minimum requirement, 114
computer based deicing simulators. See training, computer based deicing simulator
computer based training. See training, computer based
configuration – definition, 122
configuration, aircraft deicing, 83, 165
configuration, aircraft deicing – elevator, 127
configuration, aircraft deicing – flaps and slats, 158
conformity – definition, 129
contact angle, 32
contact angle – definition, 32
contact angle hysteresis – definition, 32
contact angle, advancing, 32
contact angle, advancing – definition, 32
contact angle, measurement, 32
contact angle, receding, 32
contact angle, receding – definition, 32
contaminant, frozen. See frozen contamination
contamination – definition, 165, 178
contamination [frozen] – definition, 83, 129
contamination check, 179
contamination check – definition, 83, 129
contamination check – establishes need for deicing, 83
contamination check – performance of, 83
contamination check – verification of all areas needing clean condition, 83
contamination check – definition, 83, 178
contamination check excludes clear ice check, 83
contamination check – responsibility of qualified personnel, 83
contamination inspection – definition, 129
contamination superset of anti-icing fluid, 174
contamination superset of bird droppings, 174
contamination superset of dirt, 174
contamination superset of frost, 174
contamination superset of hydraulic oil, 174
contamination superset of ice, 174
contamination superset of minor mechanical damage, 174
contamination superset of paint chipping, 174
contamination superset of rain, 174
contamination superset of snow, 174
contamination superset of squashed bugs, 174
contamination superset of variation in manufacturing tolerance, 174
contamination, asymmetric – in crosswind, 174
contamination, carbon brake. See carbon brake contamination
contamination, frozen. See frozen contamination
contamination, visible – definition, 174
continuous improvement. See improvement, continuous
critical surface – airframe manufacturer defined, 149
critical surface – control surface, 149
critical surface – definition, 84, 106, 130, 165, 181
critical surface – empennage, 149
critical surface – engine inlets, 149
critical surface – engine inlets, fuel vents, 149
critical surface – fuselage on aircraft with center mounted engine, 149
critical surface – instrument sensor pick up points, 149
critical surface – pitot heads, 149
critical surface – ram-air intakes, 149
critical surface – static ports, 149
critical surface – wings, 149
critical surface inspection (TC) – definition, 165
crystallization, delayed, 66, 75
CSFF. See frost, cold soaked fuel
CTSD, 137
DAQCP, 84
Dassault Falcon 2000 dimensions, 127
Dassault Falcon 50 dimensions, 127
Dassault Falcon 900 dimensions, 127
Dassault Falcon spray area diagram, 127
Davies, Lynn, 188
DDF – approval, 95
DDF – communications with flightcrew, 165
DDF – control boundaries, 95
DDF – definition, 95
DDF – design of, 95
DDF – documentation, 95
DDF – emergency. See emergency
DDF – emergency action plans, 95
DDF – emergency communications protocol, 95
DDF – engines-on deicing, 95
DDF – environmental considerations, 95
DDF – fluid acceptance, 95
DDF – fluid management, 95
DDF – fluid testing, 95
DDF – operational procedure, 95
DDF – phraseology, 95
DDF – pilot brief sheet, 95
DDF – pre-storm planning, 95
DDF – quality control, 95
DDF – safety, 95
DDF – service provider, single, 95
DDF – service providers, several, 95
DDF – snow removal, 95
DDF – spent fluid, 95
DDF superset of centralized deicing facility, 95
DDF superset of remote deicing facility, 96
de Havilland. See also aerodynamic effect of fluids –
evaluation by de Havilland
de Havilland DASH-8 100/200 dimensions, 127
de Havilland DASH-8 100/200/300 spray area diagram, 106, 127
de Havilland DASH-8 400/400 dimensions, 127
de Havilland DASH-8 400/400/400 spray area diagram, 127
de Havilland DHC-8, 36
definition – ACARS, 96
definition – aerodynamic acceptance, 62, 69
definition – aerodynamic acceptance test, 165
definition – aerodynamically quiet area, 174
definition – aerodynamically quiet cavity, 174
Index

definition – aerodynamically quiet surface, 174
definition – air operator (TC), 165
definition – air operator certificate (TC), 165
definition – aircraft deicing fluid. See definition – deicing fluid
definition – aircraft hydraulic fluid, 201
definition – aircraft lubricant, 201
definition – aircraft parking area, deicing pad, 155
definition – aircraft surface coating, 32
definition – allowance time, 62, 69
definition – anti-icing, 77, 84, 106, 149, 165, 174, 181
definition – anti-icing code, 84, 181
definition – anti-icing fluid, 84, 106, 149, 151, 158, 172, 178
definition – apron, 165
definition – area, wetted, 127
definition – audit, 114
definition – audit evidence, 130
definition – bleed-through, 69
definition – carbon brake, 201
definition – carbon brake friction and wear modifier, 201
definition – catalytic oxidation, 201, See definition – oxidation, catalytic
definition – CDF, 96, 155, 165
definition – check, 84, 106
definition – check time, 151
definition – check time determination system, 151
definition – check, post-deicing. See definition – post-deicing/anti-icing check
definition – check, pre-deicing, 77
definition – check, preflight. See definition – preflight check
definition – check, tactile, 84
definition – clean aircraft concept, 130, 165, 181
definition – cleaning solvent, 201
definition – clear ice, 77, 122, 165, 178
definition – clear ice, cold soaked, 84
definition – cold front, 123
definition – cold soaked clear ice, 84
definition – cold soaked effect, 84, 181
definition – cold soaked fuel frost, 84
definition – cold soaked wing, 106
definition – cold soaked wing ice/frost, 84
definition – cold soaking, 84, 122, 165, 174
definition – condensation, 122
definition – conformity, 130
definition – contact angle, 32
definition – contact angle hysteresis, 32
definition – contact angle, advancing, 32
definition – contact angle, receding, 32
definition – contamination, 165, 178
definition – contamination [frozen], 84, 130
definition – contamination check, 84, 130, 178
definition – contamination inspection, 130
definition – contamination, visible, 174
definition – control point, 96
definition – corrective action, 130
definition – critical component, 84, 130
definition – critical ice contamination, 77
definition – critical surface, 84, 165, 181
definition – critical surface inspection (TC), 165
definition – DDF, 96

definition – defrosting, 165, 174
definition – deicing, 78, 84, 106, 149, 165, 174, 181
definition – deicing bay, 96
definition – deicing coordinator, 96
definition – deicing crew, 96
definition – deicing event, 78
definition – deicing facility, 96, 97, 155, 165
definition – deicing facility, remote, 97
definition – deicing facility, terminal, 97
definition – deicing fluid, 84, 106, 149, 151, 172, 178, 201
definition – deicing lead, 96
definition – deicing pad, 96, 155, 165
definition – deicing pad aircraft parking area, 155
definition – deicing pad maneuvering area for deicing units, 155
definition – deicing service provider, 84
definition – deicing vehicle operator, primary, 96
definition – deicing/anti-icing, 84, 106, 174, 181
definition – deicing/anti-icing procedure, 178
definition – deicing/anti-icing, one-step, 179, 181
definition – deicing/anti-icing, two-step, 179, 181
definition – dewpoint, 122, 137
definition – disinfectant, 201
definition – drizzle, 122, 181
definition – EFB, 163
definition – endurance time, 32, 62, 66, 69, 75, 151, 165, 174
definition – endurance time regression analysis, 151
definition – evaporation, 122
definition – FAA/Transport Canada list of fluids. See definition – list of fluids, FAA/Transport Canada
definition – failure front, 174
definition – failure, adherence, 174
definition – failure, adhesion, 174
definition – failure, entire plate, 175
definition – failure, fifth cross hair, 175
definition – failure, first, 175
definition – failure, failure, full, 175
definition – failure, latent, 78
definition – failure, plate, 175
definition – failure, top edge, 175
definition – failure, total, 175
definition – finding, 130
definition – fire extinguishing agent, 201
definition – flight time, 165
definition – fluid adhesion, 175
definition – fluid failure, 78, 165
definition – fluid failure front, 175
definition – fluid failure, top edge, 175
definition – fluid, acceptable, 175
definition – fluid, failed, 175
definition – fluid, Newtonian, 106
definition – fluid, non-Newtonian, 51, 106
definition – fluid, pristine, 175
definition – fluid, pseudoplastic, 51
definition – fluid, qualified, 36
definition – fluid, thickened, 36
definition – fog, 181
definition – fog, ground, 181
definition – forced air, 165
definition – freezing, 123
definition – freezing drizzle, 84, 106, 122, 181
Guide to Aircraft Ground Deicing – Issue 6

definition – freezing fog, 84, 106, 122, 181
definition – freezing point, 106, 165
definition – freezing point buffer, 106, 137, 165
definition – freezing point buffer, negative, 84
definition – freezing rain, 165, 181
definition – freezing rain, heavy, 122
definition – freezing rain, light, 84, 106, 123
definition – freezing rain, moderate, 123
definition – front, cold, 123
definition – front, warm, 123
definition – frost, 84, 106, 123, 182
definition – frost point, 137
definition – frost, active, 84, 106, 123, 137, 158, 181
definition – frost, cold soaked fuel, 84
definition – frost, local, 84
definition – frozen contaminants, 149
definition – frozen contamination, 78
definition – Glycol, 42, 51
definition – glycol pan measurement, 151, 172
definition – Glycol, Conventional, 42, 51
definition – Glycol, Conventional and Non-conventional, 42, 51
definition – Glycol, Non-, 42, 51
definition – Glycol, Non-conventional, 42, 51
definition – ground coordinator, 96
definition – ground icing conditions, 130, 165
definition – ground icing operations program (TC), 165
definition – hail, 84, 106, 165
definition – hail, small, 123
definition – hard wing, 137, 149
definition – HHET, 165
definition – high humidity, 106, 182
definition – high humidity on cold soaked wing, 106, 123
definition – highest useable precipitation rate. See definition – HUPR
definition – hoarfrost, 84, 106, 123, 137, 165, 182
definition – holdover time. See definition – HOT
definition – holdover time guidelines. See definition – HOT guidelines
definition – HOT, 36, 62, 69, 84, 149, 151, 155, 165, 172, 175, 182, 188
definition – HOT guideline, 62, 69
definition – HOT guideline, fluid-specific, 62, 69
definition – HOT guideline, generic, 62, 69
definition – HOT guidelines, 165, 175
definition – HOT range, 149
definition – HOT tables, 151
definition – HOTDR, 173
definition – HOTDS, 173
definition – HOTDS continuously integrated measurement system, 173
definition – HOTDS discrete measurement system, 173
definition – HOWV, 51
definition – humidity, relative, 123
definition – HUPR, 69
definition – hydrophilic surface, 32
definition – hydrophobic surface, 32
definition – ice, 166, 175
definition – ice contamination, critical, 78
definition – ice crystals, 106
definition – ice house, 96, 165
definition – ice pellets, 84, 106, 123, 165
definition – ice, ground accumulated, 188
definition – ice, operational, 188
definition – iceman, 96
definition – icephobic surface, 32
definition – icing conditions, AFM, 188
definition – illumination, 84
definition – improvement, opportunity for, 130
definition – infrared heat deicing method, 166
definition – inspection, tactile (TC), 166
definition – list of fluids, FAA/Transport Canada, 62, 69
definition – lot, Type I, 42
definition – lot, Type II/III/IV, 51
definition – LOUT, 36, 62, 84, 123, 137, 146, 158, 178
definition – LOUT, Type I, 42
definition – LOUT, Type II/III/IV, 51, 69
definition – lowest useable precipitation rate. See definition – LUPR, See definition – LUPR
definition – LUGV, 69, 158
definition – lubricant, aircraft, 201
definition – LUPR, 69
definition – LWE rate, 151
definition – LWE sampling time, 151
definition – LWES, 151
definition – management, senior, 130
definition – maneuvering area, 166
definition – may (SAE), 84
definition – melting, 123
definition – moisture, visible, 182
definition – MOWV, 158
definition – nonconformity, 130
definition – Non-glycol, 42, 51
definition – nucleation site, 175
definition – observation, 130
definition – one-step deicing/anti-icing, 182
definition – operations bulletins s 18, 166
definition – oxidation [of carbon], 201
definition – pad control, 96
definition – pad control point, 96
definition – pad leadership, 96
definition – pilot-in-command, 166
definition – pink snow, 96
definition – plate, frosticator, 175
definition – plate, standard test, 175
definition – post deicing/anti-icing check, 106
definition – post deicing/anti-icing check (FAA), 149
definition – precipitation intensity, 182
definition – precipitation rate, 166
definition – precipitation rate for HOT tables, 175
definition – precipitation rate, 10 minute average, 175
definition – precipitation rate, 20 minute average, 175
definition – precipitation rate, 40 minute average, 175
definition – precipitation rate, 5 minute average, 175
definition – precipitation rate, peak, 175
definition – pre-deicing process, 116
definition – pre-deicing-step, 106
definition – preflight check, 106
definition – pretakeoff check, 107
definition – pretakeoff check (FAA), 149
definition – pretakeoff contamination check (EASA), 178
definition – pretakeoff contamination check (FAA), 150
definition – pretakeoff contamination inspection (TC), 166
<table>
<thead>
<tr>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventive action</td>
<td>130</td>
</tr>
<tr>
<td>Primary deicing vehicle operator</td>
<td>96</td>
</tr>
<tr>
<td>Protection time</td>
<td>175</td>
</tr>
<tr>
<td>Proximity sensor</td>
<td>84</td>
</tr>
<tr>
<td>Pseudoplastic</td>
<td>51, 107</td>
</tr>
<tr>
<td>Qualified personnel</td>
<td>130</td>
</tr>
<tr>
<td>Quality assurance</td>
<td>130</td>
</tr>
<tr>
<td>Quality control</td>
<td>130</td>
</tr>
<tr>
<td>Quality improvement</td>
<td>130</td>
</tr>
<tr>
<td>Quality management</td>
<td>130</td>
</tr>
<tr>
<td>Quality management system</td>
<td>130</td>
</tr>
<tr>
<td>Quality manual</td>
<td>130</td>
</tr>
<tr>
<td>Quality system accountable executive</td>
<td>130</td>
</tr>
<tr>
<td>Quality system accountable person</td>
<td>130</td>
</tr>
<tr>
<td>Quality system program manager</td>
<td>130</td>
</tr>
<tr>
<td>Quality system responsible person</td>
<td>130</td>
</tr>
<tr>
<td>Rain</td>
<td>107, 123</td>
</tr>
<tr>
<td>Rain and snow</td>
<td>123</td>
</tr>
<tr>
<td>Rain on cold soaked wing</td>
<td>107, 123</td>
</tr>
<tr>
<td>RDP, liquid – lot</td>
<td>193</td>
</tr>
<tr>
<td>RDP, solid – lot</td>
<td>191</td>
</tr>
<tr>
<td>Refractive index</td>
<td>84</td>
</tr>
<tr>
<td>Refractometer</td>
<td>84</td>
</tr>
<tr>
<td>Regression analysis (TC)</td>
<td>173</td>
</tr>
<tr>
<td>Regression analysis, endurance time</td>
<td>151</td>
</tr>
<tr>
<td>Remote deicing facility</td>
<td>96, 97</td>
</tr>
<tr>
<td>Representative surface</td>
<td>166</td>
</tr>
<tr>
<td>Residue/gel</td>
<td>84</td>
</tr>
<tr>
<td>Rime</td>
<td>107, 182</td>
</tr>
<tr>
<td>Rime ice</td>
<td>84</td>
</tr>
<tr>
<td>ROGIDS</td>
<td>78, 178</td>
</tr>
<tr>
<td>ROGIDS detection angle, maximum</td>
<td>78</td>
</tr>
<tr>
<td>ROGIDS detection angle, minimum</td>
<td>78</td>
</tr>
<tr>
<td>ROGIDS detection distance, maximum</td>
<td>78</td>
</tr>
<tr>
<td>ROGIDS detection distance, minimum</td>
<td>78</td>
</tr>
<tr>
<td>ROGIDS false negative</td>
<td>78</td>
</tr>
<tr>
<td>ROGIDS false positive</td>
<td>78</td>
</tr>
<tr>
<td>Roll-off angle</td>
<td>32</td>
</tr>
<tr>
<td>Root cause</td>
<td>130</td>
</tr>
<tr>
<td>Runway anti-icing/deicing solids and fluids</td>
<td>201</td>
</tr>
<tr>
<td>Saturation</td>
<td>123</td>
</tr>
<tr>
<td>Service provider</td>
<td>166</td>
</tr>
<tr>
<td>Shall (SAE)</td>
<td>84</td>
</tr>
<tr>
<td>Shear force</td>
<td>107, 182</td>
</tr>
<tr>
<td>Should (SAE)</td>
<td>84</td>
</tr>
<tr>
<td>Sliding angle</td>
<td>32</td>
</tr>
<tr>
<td>Slot management</td>
<td>96</td>
</tr>
<tr>
<td>Slush</td>
<td>84, 107, 123, 175</td>
</tr>
<tr>
<td>SMS</td>
<td>130</td>
</tr>
<tr>
<td>Snow</td>
<td>84, 107, 123, 175, 182</td>
</tr>
<tr>
<td>Snow desk</td>
<td>96</td>
</tr>
<tr>
<td>Snow grains</td>
<td>84, 123, 166</td>
</tr>
<tr>
<td>Snow pellets</td>
<td>84, 123, 166</td>
</tr>
<tr>
<td>Snow, dry</td>
<td>182</td>
</tr>
<tr>
<td>Snow, pink</td>
<td>96</td>
</tr>
<tr>
<td>Snow, wet</td>
<td>182</td>
</tr>
<tr>
<td>Specimen sheet (training)</td>
<td>166</td>
</tr>
<tr>
<td>Staff, qualified</td>
<td>84</td>
</tr>
<tr>
<td>Staging area</td>
<td>96</td>
</tr>
<tr>
<td>Staging bay</td>
<td>166</td>
</tr>
<tr>
<td>State, Cassie</td>
<td>32</td>
</tr>
<tr>
<td>State, Wenzel</td>
<td>32</td>
</tr>
<tr>
<td>Storage tank</td>
<td>84</td>
</tr>
<tr>
<td>Sublimation</td>
<td>123</td>
</tr>
<tr>
<td>Super-hydrophobic surface</td>
<td>33</td>
</tr>
<tr>
<td>Surface, treated</td>
<td>33</td>
</tr>
<tr>
<td>Taxiway</td>
<td>166</td>
</tr>
<tr>
<td>Temperature indication markers</td>
<td>201</td>
</tr>
<tr>
<td>Terminal deicing facility</td>
<td>166</td>
</tr>
<tr>
<td>Thermal oxidation</td>
<td>201</td>
</tr>
<tr>
<td>Training, head of</td>
<td>130</td>
</tr>
<tr>
<td>Transfer point</td>
<td>96</td>
</tr>
<tr>
<td>Tribology</td>
<td>201</td>
</tr>
<tr>
<td>Two-step deicing/anti-icing</td>
<td>182</td>
</tr>
<tr>
<td>Type I</td>
<td>137</td>
</tr>
<tr>
<td>Type II/III/IV</td>
<td>137</td>
</tr>
<tr>
<td>Viscosity limit, lower sales specification</td>
<td>70</td>
</tr>
<tr>
<td>Water vapor</td>
<td>123</td>
</tr>
<tr>
<td>Windrows</td>
<td>96</td>
</tr>
<tr>
<td>Winter operations</td>
<td>130</td>
</tr>
<tr>
<td>WSET</td>
<td>62, 70, 166</td>
</tr>
<tr>
<td>Defrosting</td>
<td>166, 175</td>
</tr>
<tr>
<td>Deicing</td>
<td>85</td>
</tr>
<tr>
<td>Fluid application, deicing/anti-icing</td>
<td>85</td>
</tr>
<tr>
<td>Frozen contamination, removal of</td>
<td>85</td>
</tr>
<tr>
<td>Aircraft configuration</td>
<td>182</td>
</tr>
<tr>
<td>Definition</td>
<td>78, 84, 107, 150, 166</td>
</tr>
<tr>
<td>Flightcrew and ground crew communications</td>
<td>182</td>
</tr>
<tr>
<td>Deicing bay</td>
<td>96</td>
</tr>
<tr>
<td>Deicing boom</td>
<td>104</td>
</tr>
<tr>
<td>Deicing boom – variable height</td>
<td>104</td>
</tr>
<tr>
<td>Deicing configuration</td>
<td>96</td>
</tr>
<tr>
<td>Deicing coordinator</td>
<td>96</td>
</tr>
<tr>
<td>Deicing event</td>
<td>78</td>
</tr>
<tr>
<td>Deicing events</td>
<td>1985-2005, 78</td>
</tr>
<tr>
<td>Deicing events – worldwide estimate</td>
<td>1985-2005, 78</td>
</tr>
<tr>
<td>Deicing facility – aircraft – narrow-body</td>
<td>182</td>
</tr>
<tr>
<td>Deicing facility – aircraft – wide-body</td>
<td>182</td>
</tr>
<tr>
<td>Deicing facility – aircraft failure</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – aircraft marshaling plan</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – aircraft parking area</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – apron perimeter</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – ATC coordination with</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – BOD</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – capacity</td>
<td>155</td>
</tr>
<tr>
<td>Deicing facility – COD</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – common fluid</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – construction</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – crew shelter</td>
<td>182</td>
</tr>
<tr>
<td>Deicing facility – definition</td>
<td>96, 97, 155, 166</td>
</tr>
<tr>
<td>Deicing facility – deicing pad safety</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – deicing vehicle maneuvering area</td>
<td>97</td>
</tr>
<tr>
<td>Deicing facility – design</td>
<td>97, 155, 182</td>
</tr>
<tr>
<td>Deicing facility – disabled aircraft</td>
<td>98</td>
</tr>
<tr>
<td>Deicing facility – drainage</td>
<td>98</td>
</tr>
<tr>
<td>Deicing facility – drainage and collection</td>
<td>98, 182</td>
</tr>
<tr>
<td>Deicing facility – effect on water quality</td>
<td>98</td>
</tr>
<tr>
<td>Deicing facility – emergency evacuation</td>
<td>98</td>
</tr>
<tr>
<td>Deicing facility – emergency response</td>
<td>98</td>
</tr>
<tr>
<td>Deicing facility – engine shutdown/restart</td>
<td>98</td>
</tr>
<tr>
<td>Deicing facility – environmental considerations</td>
<td>98, 182</td>
</tr>
<tr>
<td>Deicing facility – environmental reporting</td>
<td>98</td>
</tr>
<tr>
<td>Deicing facility – equipment failures</td>
<td>98</td>
</tr>
<tr>
<td>Deicing facility – facility activation</td>
<td>98</td>
</tr>
</tbody>
</table>
deicing facility – FBO, 98
deicing facility – fluid segregation, 98
deicing facility – gate hold procedure, 98
deicing facility – glycol – oxygen depleting potential, 98
deicing facility – glycol recovery vehicle, 98
deicing facility – grooved pavements, 98
deicing facility – ground power unit, 98
deicing facility – ground safety clearance, 182
deicing facility – ground water protection, 98
deicing facility – GRV, 98
deicing facility – jet blast, 98
deicing facility – lighting system, 182
deicing facility – location considerations, 98
deicing facility – message boards, 99
deicing facility – navigational aid clearance, 182
deicing facility – nighttime lighting systems, 98
deicing facility – obstacle clearance, 182
deicing facility – oil/water separator, 98
deicing facility – operational procedure, 96
deicing facility – pad configuration, 98
deicing facility – pad design, 182
deicing facility – passenger emergency, 98
deicing facility – pavement lighting, 98
deicing facility – pavement markings, 98
deicing facility – pavement system, 98
deicing facility – pH, 98
deicing facility – piping, 98
deicing facility – planning, 98
deicing facility – prevailing winds, 98
deicing facility – proximity to runway, 182
deicing facility – recycling ADF, 98
deicing facility – secondary containment, 98
deicing facility – security requirements, 98
deicing facility – separation standards, 182
deicing facility – signage, 98
deicing facility – siting, 182
deicing facility – spent ADF – above ground storage tanks, 98
deicing facility – spent ADF – biological degradation, 98
deicing facility – spent ADF – detention pond, 98
deicing facility – spent ADF – disposal, 98
deicing facility – spent ADF – photochemical oxidation, 98
deicing facility – spent ADF – recycling, 98, 182
deicing facility – spent ADF – storage size, 98
deicing facility – spent ADF – underground storage tanks, 98
deicing facility – storage, 98, 182
deicing facility – storm drain system, 98
deicing facility – storm water, 98
deicing facility – surface water, 98
deicing facility – taxi route bypass, 182
deicing facility – taxi routes, 98, 182
deicing facility – taxi time, 182
deicing facility – throughput demand, 98, 182
deicing facility – TOC, 99
deicing facility – total suspended solids, 99
deicing facility – valve types, 99
deicing facility – vehicle staging, 99
deicing facility – weather conditions, 182
deicing facility – wingtip separation, 99
deicing facility safety risk management, 155
deicing facility safety risk management mandatory before construction, 155
deicing facility stakeholders – air taxis, 155
deicing facility stakeholders – air traffic control, 155
deicing facility stakeholders – aircraft rescue and firefighting chief, 155
deicing facility stakeholders – airport environmental manager, 155
deicing facility stakeholders – airport operations chief, 155
deicing facility stakeholders – engineering design contractor, 155
deicing facility stakeholders – general aviation, 155
deicing facility stakeholders – ground deicing managers, 155
deicing facility stakeholders – other authorities, 155
deicing facility stakeholders – pilot organizations, 155
deicing facility stakeholders – regulator, 155
deicing facility stakeholders – station managers of air carriers, 155
deicing facility, centralized aircraft. See CDF
deicing facility, infrared. See infrared deicing facility
deicing facility, off-gate, 155, See also CDF
deicing facility, on-gate excludes CDF, 155
deicing facility, remote – definition, 99
deicing facility, remote aircraft. See CDF
deicing facility, remote subset of CDF, 155
deicing facility, remote subset of DDF, 96
deicing facility, terminal – definition, 99
deicing facility, terminal gate – apron drainage, 155
deicking facility, terminal gate – capacity, 155
deicing facility, terminal gate – cost of glycol mitigation issues, 155
deicing facility, terminal gate – environmental issues, 155
deicing facility, terminal gate – gate delays issues, 155
deicing facility, terminal gate – lack of gate for deicing issues, 155
deicing facility, terminal gate – spent ADF collection, 155
deicing facility, terminal gate – taxing time issues, 155
deicing facility, terminal gate excludes CDF, 155
deicing fluid – definition, 85, 107, 150, 151, 173, 178, 201
deicing fluid v anti-icing fluid, 137
deicking lead – definition, 96
deicking operator – definition, 96
deicking pad – definition, 96, 99, 155, 166
deicking pad – fixed deicing unit considerations, 155
deicking pad aircraft parking area – definition, 155
deicking pad grouping, 155
deicking pad layout, 155
deicking pad maneuvering area for deicing units – definition, 156
deicking pad orientation – high winds, 156
deicking pad orientation – jet blast, 156
deicking pad orientation – prevailing wind, 156
deicking pad orientation – visibility, 156
deicking pad orientation – with respect to taxiway, 156
deicking pad separation standards, 156
deicking pad surface markings, 156
deicking pad surface markings – boundary markings, 156
deicking pad surface markings – pad grouping marking, 156
deicking pad surface markings – taxiway centerline, 156
deicing pad surface markings – taxiway holding position marking, 156
deicing pad surface markings – vehicle safety zone marking, 156
deicing pad taxiway centerline requirement, 156
deicing pad vehicle safety zone, 156
deicing pad, composite, 156
deicing pad, number of, 156
deicing program – air traffic control tower, 107
deicing program – ATC, 107
deicing program – FAA approved, 137
deicing program – flight operations plan, 107
deicing program – ground operations plan, 107
deicing program – inclusion in aircraft operator manual for flightcrews, 107
deicing program – management plan, 107
deicing program – manager responsibilities, 107
deicing program – TC approved, 166
deicing provider – responsibilities, 85
deicing service provider, 99, See service provider
deicing service provider – definition, 85
deicing truck. See deicing unit
deicing unit – acceptance, 101
deicing unit – aerial basket, 101
deicing unit – aerial device, 101
deicing unit – aircraft inspection, use for, 101
deicing unit – aircraft maintenance, use for, 101
deicing unit – asphyxiation danger in poorly ventilated areas, 85
deicing unit – basket, 101
deicing unit – basket capacity, 101
deicing unit – basket capacity – two persons, 182
deicing unit – blower, 101
deicing unit – boom, 101
deicing unit – cabin design requirements, 104
deicing unit – chassis, 101
deicing unit – combustion heaters, 101
deicing unit – controls and instrumentation, 101
deicing unit – enclosed cabin. See enclosed cabin
deicing unit – fast heating system, 101
deicing unit – fill ports, 101
deicing unit – fill ports – different sizes, 101
deicing unit – fluid contamination, 101
deicing unit – fluid delivery pressure, 101
deicing unit – fluid delivery rate, 101
deicing unit – fluid delivery temperatures, 101
deicing unit – fluid fill couplings, 101
deicing unit – fluid fill ports, 101
deicing unit – fluid heating system, 101
deicing unit – fluid heating system, electric, 101
deicing unit – fluid labeling, 101
deicing unit – fluid level gauges, 101
deicing unit – fluid mixing system, 101
deicing unit – fluid mixing system – verification of, 182
deicing unit – fluid pressure gauge, 101
deicing unit – fluid proportioning system, 101
deicing unit – fluid pumps, 102
deicing unit – fluid pumps – circulating/mixing, 102
deicing unit – fluid pumps – on demand, 102
deicing unit – fluid pumps – positive displacement, 102
deicing unit – fluid pumps – rotary diaphragm, 102
deicing unit – fluid pumps – test for degradation, 102
deicing unit – fluid pumps – Type II/III/IV, 102
deicing unit – fluid spray pattern, 102
deicing unit – fluid system, 102
deicing unit – fluid tank, 102
deicing unit – fluid tank capacity, 102
deicing unit – fluid tank fittings, 102
deicing unit – forced air. See forced air, 103
deicing unit – fuel capacity, 102
deicing unit – functional information, 182
deicing unit – hose couplings, 102
deicing unit – hot water deicing system, 102
deicing unit – inspection – after maintenance, 166
deicing unit – inspection – after modification, 166
deicing unit – inspection – annual, 166
deicing unit – inspection – hoses, 166
deicing unit – inspection – nozzle, 166
deicing unit – inspection – pumps, 166
deicing unit – inspection of aircraft, 102
deicing unit – labeling of, 102
deicing unit – maintenance manuals, 102
deicing unit – markings on, 102
deicing unit – mixing system. See deicing unit – fluid mixing system
deicing unit – modifications, 102
deicing unit – nozzle, 102
deicing unit – nozzle – ground level – Type I only, 102
deicing unit – nozzle – pressure gauge, 102
deicing unit – nozzle – rate of flow adjustment, 102
deicing unit – nozzle – spray patterns, 102
deicing unit – nozzle – test for degradation, 102
deicing unit – nozzle – Type II/III/IV, 102
deicing unit – nozzle, adjustable, 102
deicing unit – on-board fluid mixing system, 102
deicing unit – open basket v closed cabin, 182
deicing unit – operation in closed areas, 85
deicing unit – operation in poorly ventilated areas, 85
deicing unit – parts, 102
deicing unit – personnel basket. See deicing unit – basket
deicing unit – product support, 102
deicing unit – proportioning mix system, 102
deicing unit – pumps. See deicing unit- fluid pumps
deicing unit – speed, 102
deicing unit – speed control device, 102
deicing unit – spray nozzle. See deicing unit – nozzle
deicing unit – tank capacity, 102
deicing unit – tank covers, 102
deicing unit – tank rain entry prevention, 102
deicing unit – technical requirements, 102
deicing unit – training by manufacturer, 102
deicing unit – Type II, III and IV system, 102
deicing unit – use for aircraft maintenance, 102
deicing unit – use for inspection, 102
deicing unit – walk around check, 130
deicing unit collision with aircraft, 166
deicing unit, fixed, 156
deicing unit, fixed – gantry, 156
deicing unit, fixed – telescopic boom, 156
deicing vehicle operator, primary – definition, 96
deicing, general strategy for, 85
deicing, local area, 85
deicing, local area – symmetrical fluid application, 85
deicing, re-. See fluid application – re-deicing
deicing/anti-icing. See also fluid application
deicing/anti-icing – absence of flightcrew at the time of, 85, 137
deicing/anti-icing – definition, 85, 175, 182
deicing/anti-icing – flightcrew awareness, 137
deicing/anti-icing application information transmitted to flightcrew (ICAO) – part of aircraft airworthiness, 182
deicing/anti-icing contracts, 85
deicing/anti-icing decision – after flightcrew is on board, 107, 116
deicing/anti-icing decision – aircraft deiced or anti-iced some time before flightcrew arrival, 85
deicing/anti-icing decision – aircraft subject to ice accretion in-flight, 85
deicing/anti-icing decision – aircraft subject to snow or ice conditions, 85
deicing/anti-icing decision – aircraft subject to snow or ice conditions during taxi to gate, 85
deicing/anti-icing decision – aircraft subject to snow or ice conditions while parked, 85
deicing/anti-icing decision – contamination check by flightcrew, 107, 116
deicing/anti-icing decision – contamination check by ground crew, 85
deicing/anti-icing decision – overnight aircraft prior to flightcrew arrival, 107, 116
deicing/anti-icing methods, 85
deicing/anti-icing procedure – definition, 178
deicing/anti-icing truck. See deicing unit
deicing/anti-icing, aircraft requirements after. See clean condition
deicing/anti-icing, ground (ICAO) – part of aircraft operations, 182
deicing/anti-icing, interruption of, 85
deicing/anti-icing, one-step, 85
deicing/anti-icing, two-step, 85
deicing/anti-icing, two-step – definition, 179, 182
designated deicing facility. See DDF
dewpoint, 137
dewpoint – definition, 123, 137
dust, 209
EG v PG Type IV based fluids – allowance time. See allowance time – EG v PG based fluids
eHOT, 137
eHOT app, 163
eHOT app – acceptance process (TC), 163
eHOT app – authorization (TC), 163
eHOT app – definition, 163
eHOT app – demonstration of equivalence or superiority to HOT paper version, 163
eHOT app – guidance (TC), 163
eHOT app – MOPS (TC), 163
eHOT app – testing and evaluation requirements (TC), 163
eHOT app – training, 163
eHOT app types – dynamic interactive – HOTDS input, 163
eHOT app types – dynamic interactive – manual input, 163
eHOT app types – fixed presentation, 163
e-learning. See training, computer based deicing
Embraer E120 dimensions, 127
Embraer E120 spray area diagram, 107, 127
Embraer E135/E140/E145 dimensions, 127
Embraer E135/E140/E145 spray area diagram, 107, 127
Embraer E170/175 spray area diagram, 107
Embraer E170/E175 dimensions, 127
Embraer E170/E175 spray area diagram, 127
Embraer E190/E195 dimensions, 127
Embraer E190/E195 spray area diagram, 127

Guides to Aircraft Ground Deicing – Issue 6

Dry snow, adhesion of – effect of hydraulic fluid heat exchangers, 137
Dry snow, adhesion of – effect of OAT, 137
Dry snow, adhesion of – effect of refueling, 137, 158
Dry snow, adhesion of – effect of weather, 137, 158
Dry snow, adhesion of – effect of wing in the sun, 137
Dry snow, adhesion of – effect of wing temperature, 137, 158
Dry snow, adhesion of – regulations (US), 137
Dry snow, non-adhesion of – non-use of fluids, 158
Dryden accident, 22
dry-out, Type II/IV. See Type II/III/IV residue; Type II/IV residue
due diligence, principle of, 166
dust, 209
EASA, 3, 25
EASA AMC1 ADR.OPS.C010, 209
EASA GM1 CAT.OP.MPA.250, 178
EASA GM2 CAT.OP.MPA.250, 179
EASA GM3 CAT.OP.MPA.250, 180
EASA icing research, 26
EASA recommendation to use – FAA Holdover time Guidelines, 177
EASA recommendation to use – FAA Notice N 8900.xxx
 FAA-Approved Deicing program Updates, Winter 20xx-20yy, 177
EASA recommendation to use – global aircraft deicing standards, 177
EASA SIB 2008-19R2, 208
EASA SIB 2018-01, 207
edge effect. See also WSET – failure zone;
EFB – definition, 163
effluent collection, 166
effluent containment, 166
effluent disposal, 166
EG v PG Type IV based fluids – allowance time. See allowance time – EG v PG based fluids
eHOT, 137
eHOT app, 163
eHOT app – acceptance process (TC), 163
eHOT app – authorization (TC), 163
eHOT app – definition, 163
eHOT app – demonstration of equivalence or superiority to HOT paper version, 163
eHOT app – guidance (TC), 163
eHOT app – MOPS (TC), 163
eHOT app – testing and evaluation requirements (TC), 163
eHOT app – training, 163
eHOT app types – dynamic interactive – HOTDS input, 163
eHOT app types – dynamic interactive – manual input, 163
eHOT app types – fixed presentation, 163
e-learning. See training, computer based deicing
Embraer E120 dimensions, 127
Embraer E120 spray area diagram, 107, 127
Embraer E135/E140/E145 dimensions, 127
Embraer E135/E140/E145 spray area diagram, 107, 127
Embraer E170/175 spray area diagram, 107
Embraer E170/E175 dimensions, 127
Embraer E170/E175 spray area diagram, 127
Embraer E190/E195 dimensions, 127
Embraer E190/E195 spray area diagram, 127
Index

endurance tests, Type I – fluid manufacturer documentation – freezing point data, 66
endurance tests, Type I – fluid manufacturer documentation – freezing point v dilution data, 66
endurance tests, Type I – fluid manufacturer documentation – freezing point v refractive index data, 66
endurance tests, Type I – fluid manufacturer documentation – LOUT, 66
endurance tests, Type I – fluid manufacturer documentation – safety data sheet, 66
endurance tests, Type I – fog, freezing, 66
endurance tests, Type I – freezing drizzle, 66
endurance tests, Type I – freezing fog, 66
endurance tests, Type I – frost, laboratory, 66
endurance tests, Type I – frost, natural, 66
endurance tests, Type I – glycol based – none, 62
endurance tests, Type I – glycol based fluid, other, 66
endurance tests, Type I – ice crystal seeding, 66
endurance tests, Type I – icing intensity measurements, 66
endurance tests, Type I – icing intensity measurements by regression analysis, 66
endurance tests, Type I – icing intensity measurements with reference ice-catch plates, 66
endurance tests, Type I – laboratory snow, 67
endurance tests, Type I – light freezing rain, 66
endurance tests, Type I – manufacturer’s mandatory documentation, 66
endurance tests, Type I – non-glycol based – test required, 62
endurance tests, Type I – non-glycol based fluid – test required, 66
endurance tests, Type I – propylene glycol based fluid – test not required, 66
endurance tests, Type I – purpose, 66
endurance tests, Type I – rain on cold soaked wing, 66
endurance tests, Type I – regression analysis, 66
endurance tests, Type I – relation to HOT, 66
endurance tests, Type I – report, 67
endurance tests, Type I – role of testing agent, 67
endurance tests, Type I – sample selection, 62, 67
endurance tests, Type I – sample, sheared, 67
endurance tests, Type I – snow form excludes: graupel (soft hail), 67
endurance tests, Type I – snow form excludes: hail, 67
endurance tests, Type I – snow form excludes: ice pellets, 67
endurance tests, Type I – snow form excludes: soft hail (graupel), 67
endurance tests, Type I – snow form includes: capped columns, 67
endurance tests, Type I – snow form includes: columns, 67
endurance tests, Type I – snow form includes: irregular particles, 67
endurance tests, Type I – snow form includes: needles, 67
endurance tests, Type I – snow form includes: plates, 67
endurance tests, Type I – snow form includes: snow grains, 67

endurance tests, Type I – fluid manufacturer documentation – aerodynamic acceptence data, 66
endurance time tests, Type I – snow form includes: spatial dendrites, 67
endurance time tests, Type I – snow form includes: stellar crystals, 67
endurance time tests, Type I – snow grains, 67
endurance time tests, Type I – snow, laboratory – shorter time than natural snow, 67
endurance time tests, Type I – snow, laboratory – snow distribution systems, 67
endurance time tests, Type I – snow, laboratory – variability across test plates, 67
endurance time tests, Type I – testing agent – independence from fluid manufacturer, 67
endurance time tests, Type I – testing agent, role of, 67
endurance time tests, Type I – test plate cleanliness, 67
endurance time tests, Type I – test facility/site – temperature, lowest test, 67
endurance time tests, Type I – test facility/site – test facility/site, role of, 67
endurance time tests, Type I – test facility/site – independence from fluid manufacturer, 67
endurance time tests, Type I – testing agent – independence from fluid manufacturer, 67
endurance time tests, Type I – testing agent, role of, 67
endurance time tests, Type I – variability across test plates, 67
endurance time tests, Type I – water hardness, 67
endurance time tests, Type I – WSET check on sheared sample, 67
endurance time tests, Type II/III/IV, 76
endurance time tests, Type II/III/IV – data examination by SAE G-12 HOT, 75
endurance time tests, Type II/III/IV – data validation by SAE G-12 HOT, 75
endurance time tests, Type II/III/IV – delayed crystallization, 75
endurance time tests, Type II/III/IV – failure mode – visual, 75
endurance time tests, Type II/III/IV – failure mode, snow – dilution, 75
endurance time tests, Type II/III/IV – failure mode, snow – snow-bridging, 75
endurance time tests, Type II/III/IV – failure, frozen contamination – 30% area, 75
endurance time tests, Type II/III/IV – failure, frozen contamination – appearance, 75
endurance time tests, Type II/III/IV – failure, snow – 30% area or non-absorption over 5 crosshairs, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – color, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – dilutions to be tested, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – freezing point data, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – freezing point depressant, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – refractive index data, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – safety data sheet, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – test name, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – viscosity, 75
endurance time tests, Type II/III/IV – fluid manufacturer documentation – viscosity method, 75
endurance time tests, Type II/III/IV – fog, freezing, 75
endurance time tests, Type II/III/IV – freezing drizzle, 75
endurance time tests, Type II/III/IV – freezing fog, 75
endurance time tests, Type II/III/IV – frost, laboratory, 75
endurance time tests, Type II/III/IV – frost, natural, 75
endurance time tests, Type II/III/IV – ice crystal seeding, 75
endurance time tests, Type II/III/IV – icing intensity measurements, 75
endurance time tests, Type II/III/IV – icing intensity measurements by regression analysis, 75
endurance time tests, Type II/III/IV – icy intensity measurements with reference ice-catch plates, 75
endurance time tests, Type II/III/IV – light freezing rain, 75
endurance time tests, Type II/III/IV – manufacturer’s mandatory documentation, 75
endurance time tests, Type II/III/IV – purpose, 75
endurance time tests, Type II/III/IV – rain on cold soaked wing, 75
endurance time tests, Type II/III/IV – regression analysis, 75
endurance time tests, Type II/III/IV – relation to HOT, 75
endurance time tests, Type II/III/IV – sample – viscosity reduced subsequent to manufacturing, 75
endurance time tests, Type II/III/IV – sample – without shearing, 75
endurance time tests, Type II/III/IV – sample selection, 70, 75
endurance time tests, Type II/III/IV – sample selection – viscosity reduction by manufacturer, 75
endurance time tests, Type II/III/IV – sample viscosity, 75
endurance time tests, Type II/III/IV – snow form excludes: graupel (soft hail), 75
endurance time tests, Type II/III/IV – snow form excludes: hail, 75
endurance time tests, Type II/III/IV – snow form excludes: ice pellets, 75
endurance time tests, Type II/III/IV – snow form excludes: soft hail (graupel), 76
endurance time tests, Type II/III/IV – snow form includes: capped columns, 76
endurance time tests, Type II/III/IV – snow form includes: columns, 76
endurance time tests, Type II/III/IV – snow form includes: irregular particles, 76
endurance time tests, Type II/III/IV – snow form includes: needles, 76
endurance time tests, Type II/III/IV – snow form includes: plates, 76
endurance time tests, Type II/III/IV – snow form includes: snow grains, 76
endurance time tests, Type II/III/IV – snow form includes: spatial dendrites, 76
endurance time tests, Type II/III/IV – snow form includes: stellar crystals, 76
endurance time tests, Type II/III/IV – snow grains, 76
endurance time tests, Type II/III/IV – snow, artificial – made by shaving ice cores, 76
endurance time tests, Type II/III/IV – snow, artificial – made by spraying water in a cold chamber, 76
endurance time tests, Type II/III/IV – snow, artificial – test, indoor – with storage and distribution, 76
endurance time tests, Type II/III/IV – snow, artificial – test, indoor – without storage, 76
endurance time tests, Type II/III/IV – snow, laboratory, 76
endurance time tests, Type II/III/IV – snow, natural, 76
endurance time tests, Type II/III/IV – snow, natural – test, outdoor, 76
endurance time tests, Type II/III/IV – test facility/site, 76
endurance time tests, Type II/III/IV – test plate cleanliness, 76
endurance time tests, Type II/III/IV – testing agent – independence from fluid manufacturer, 76
endurance time tests, Type II/III/IV – testing agent – role/duties, 76
endurance time tests, Type II/III/IV – variability across test plates, 76
endurance time tests, Type II/III/IV – viscosity check on unsheared sample, 76
endurance time tests, Type II/III/IV – viscosity reduction by manufacturer, 76
endurance time tests, Type II/III/IV – water droplet size – dye stain method, 76
endurance time tests, Type II/III/IV – water droplet size – laser diffraction method, 76
endurance time tests, Type II/III/IV – water droplet size – slide impact method with colloidal silver, 76
endurance time tests, Type II/III/IV – water droplet size – slide impact method with oil, 76
endurance time tests, Type II/III/IV – water hardness, nozzles, 76
endurance time tests, Type II/III/IV – WSET check on unsheared sample, 76
endurance time tests, Type III – fluid manufacturer documentation – intended method of use, 76
group deicing, 85
group icing, conditions conducive to – freezing fog, 85
group icing, conditions conducive to – freezing precipitation, 85
group numbering, 127
group, aft-mounted – effect of clear ice, 166
group- on deicing, 96, 166
environmental regulations, compliance with, 182
equipment manufacturer recommendations, compliance with, 182
ethylene glycol, 65, See also Glycol, Conventional – ethylene glycol; EG v PG
ethylene glycol based Type I – endurance time tests not required, 67
European Aviation Safety Agency. See EASA evaporation – definition, 123
eye protection, 166
FAA, 3, 23
FAA AC 120-60B Ground Deicing and Anti-icing Program, 149
FAA Advisory Circular AC 120-112, 151
FAA Engine and Propeller Directorate – engine run-ups in heavy snow, 137
FAA Holdover Time Guidelines – EASA recommendation to use, 177
FAA icing research, 26
FAA Notice N 8900.431, 137
FAA Notice N 8900.xxx FAA–Approved Deicing program Updates, Winter 20xx–20yy – EASA recommendation to use, 177
FAA, role of – as defined by ICAO, 183
FAA/TC list of fluids. See list of fluids, FAA/Transport Canada
FAA-approved Snow and Ice Control Plan, 156
face protection, 167
failed fluid. See fluid failure failure front – definition, 175
failure, mode, allowance time – aerodynamic and visual, 62, 70
failure, mode, endurance time – visual, 62, 67, 70
failure, mode, HOT – visual, 62
failure, adherence – definition, 175
failure, adhesion – definition, 175
failure, deicing/anti-icing fluid. See fluid failure failure, entire plate – definition, 175
failure, fifth cross hair – definition, 175
failure, first – definition, 175
failure, fluid. See fluid failure failure, full – definition, 175
failure, latent, 78
failure, latent – definition, 78
failure, plate. See also frozen contamination, appearance failure, plate – 30% coverage with frozen contamination, 67
failure, plate – definition, 175
failure, standard plate, 175
failure, top edge – definition, 175
failure, total – definition, 175
failure, undetected. See failure, latent
Fairchild Dornier 328 Propeller spray area diagram, 128
Fairchild Dornier 328JET dimensions, 128
Fairchild Dornier 328JET spray area diagram, 128
Fairchild Dornier 728JET dimensions, 128
Fairchild Dornier D328 Propeller spray area diagram, 107
Fairchild Dornier J328 Jet spray area diagram, 107
Fairchild Metro/Merlin spray area diagram, 107, 128
fall protection systems, 167
FBO, 99, See also service provider
Federal Aviation Administration. See FAA field spray test. See spray test, field finding – definition, 130
fire extinguishing agent – definition, 201
first aid, 167
first icing event. See failure first response, 167
fixed base operator. See FBO fixed deicing equipment – enclosed cabin, 104
flaps and slats contamination – blowing snow, 85
flaps and slats contamination – in-flight-ice accretion, 85
flaps and slats contamination – not visible when retracted, 85
flaps and slats deployed – guidance, 146, 158
flaps and slats deployed – guidance (FAA), 137
flaps and slats deployed – guidance (TC), 167
flight control, 85
flight control check, 85, 107, 116
flight personnel. See flight crew
flight time – definition, 167
flight crew – HOT re-evaluation. See also pilot assessment of precipitation intensity
flight crew – HOT re-evaluation in improving weather condition – guidance (TC), 158
flight crew – HOT re-evaluation in worsening weather conditions – guidance (TC), 158
flight crew absence during deicing/anti-icing, 137
flight crew awareness – deicing/anti-icing, 137
flight crew knowledge of – critical areas, 183
flight crew knowledge of – deicing anti-icing, factors affecting, 183
flight crew knowledge of – deicing/anti-icing methods, 183
flight crew knowledge of – deicing/anti-icing methods, limitations of, 183
flight crew knowledge of – hazards of ice, snow and frost, 183
flow – laminar v turbulent, 175
fluid acceptance, 86
fluid acceptance – certificate of conformity, 85
fluid acceptance – cleaning certificate, 85
fluid acceptance – color, 85
fluid acceptance – concentration [by refraction], 85
fluid acceptance – DDF, 96
fluid acceptance – foreign body contamination [aka suspended matter], 85
fluid acceptance – label check, 85
fluid acceptance – pH, 85
fluid acceptance – previous load documentation, 85
fluid acceptance – refractive index, 85
fluid acceptance – suspended matter [aka foreign body contamination], 85
fluid acceptance – viscosity, 85
fluid acceptance – visual inspection, 86
fluid adherence – definition, 175
fluid application. See also no spray; no spray directly.
fluid application – air conditioning off, 86, 128
fluid application – aircraft deicing configuration, 86
fluid application – airframe manufacturer requirement, 86
fluid application – APU bleed air off, 86, 128, 183
fluid application – cockpit windows, 86
fluid application – composite surfaces, 86
fluid application – elevator, 86
fluid application – engine, 86
fluid application – engine manufacturer requirements, 86
fluid application – engines, 183
fluid application – flaps and slats, 86
fluid application – fuselage, 86, 183
fluid application – fuselage from nose to aft, 188
fluid application – fuselage top centerline to outboard, 188
fluid application – guidance (EASA), 179
fluid application – guidance (TC), 158
fluid application – guidelines, 86, 146, 158
fluid application – heat loss, 86, 183
fluid application – horizontal stabilizer, 86, 183
fluid application – in a hangar, 137, 158
fluid application – in a hangar of T-tail aircraft, 137, 158
fluid application – instrument sensors, 183
fluid application – interruption – communication with flight crew, 86
fluid application – interruption of, 86, 179
fluid application – landing gear, 183
fluid application – landing gear and wheel bays, 86
fluid application – leading edge to trailing edge, 188
fluid application – maximum temperature – training, 107
fluid application – minimize dilution with the first step fluid, 86
fluid application – one-step, 86, 146, 158, 189
fluid application – outboard to inboard, 189
fluid application – re-deicing, 86, 183
fluid application – removal of all frozen contamination, 86
fluid application – removal of diluted fluid, 86
fluid application – rudder, 86
fluid application – steering system, 86
fluid application – symmetrical, 86, 158, 183, 189
fluid application – symmetrical – elevator, 189
fluid application – symmetrical – horizontal stabilizer, 189
fluid application – symmetrical – vertical stabilizer, 189
fluid application – symmetrical – wing, 189
fluid application – temperature limits, 86, 146, 158
fluid application – three minute rule. See three minute rule fluid application
fluid application – two-step, 86, 146, 158, 189
fluid application – two-step – compatibility of Type I with Type II/III/IV, 86
fluid application – unsuccessful, 179
fluid application – vertical stabilizer, 86
fluid application – vertical surface, 183
fluid application – wheel bays, 86, 183
fluid application – wing, 86, 183
fluid application – wing skin temperature lower than OAT, 86, 146, 158
fluid application issues – diluted fluid remaining on aircraft surface, 137
fluid application issues – incomplete removal of contamination, 137
fluid application issues – insufficient amount of Type II/IV, 137
fluid application issues – insufficient freezing point buffer, 137
fluid application issues – loss of fluid heat during application, 137
fluid application issues – relying on fluid flow-back over contaminated areas, 137
fluid application issues – reverse order – e.g. wing tip to wing root, 137
fluid application issues – uneven application of Type II/III/IV, 137
fluid application – anti-icing – amount required, 86, 128
fluid application, anti-icing – before first step fluid freezes, 86
fluid application, anti-icing – clean aircraft, on, 86, 146, 158
fluid application, anti-icing – insufficient amount, 86, 137, 146, 158
fluid application, anti-icing – maximum protection, 86
fluid application, anti-icing – not on top of contamination, 86
fluid application, anti-icing – one-step application of Type II/III/IV – residue formation, 86
Index

fluid application, anti-icing – uniformity, 86
fluid application, deicing – minimum quantity, 137
fluid application, deicing – quantity, minimum, 86
fluid application, deicing – quantity, minimum – 1 liter/m², 86
fluid application, temperature application limits, 86
fluid application, deicing – temperature application minimum, 137, 146, 158
fluid application, deicing – temperature at nozzle, minimum 60°C, 86, 138, 146, 158
fluid application, two-step – Type I compatibility with Type II/III/IV, 42, 138
fluid certificate of conformance – fluid manufacturer to provide, 167
fluid check, 87
fluid check – daily, 86
fluid check – frequency, 86
fluid check – pre-season, 87
fluid check – records, 87
fluid check – within-season, 87
fluid commingling. See Type I – commingling; Type II/III/IV commingling
fluid compatibility – Type I with Type II/III/IV, 42, 87, 138, 143
fluid dry-out. See Type II/III/IV residue; Type II/IV residue fluid effectiveness, loss of. See fluid failure
fluid elimination – Type II/III/IV high speed ramp, 39
fluid elimination – Type II/III/IV low speed ramp, 39
fluid environmental impact, 167
fluid failure, 180
fluid failure – definition, 78, 167
fluid failure description, 78
fluid failure description – adherence of frozen contamination, 78
fluid failure description – color change to white, 87
fluid failure description – dulling of surface reflectivity, 78, 123
fluid failure description – graying of surface reflectivity, 123
fluid failure description – ice pellets in fluid adhering to aircraft surface, 138
fluid failure description – ice pellets in fluid forming a slushy consistency, 138
fluid failure description – ice pellets in fluid forming a slushy consistency v visible individual ice pellets in fluid, 138
fluid failure description – loss of gloss, 87
fluid failure description – no absorption of precipitation, 78, 123, 138
fluid failure description – presence of frozen contamination in the fluid, 78
fluid failure description – presence of frozen contamination on the fluid, 78, 123
fluid failure description – presence of ice crystals in the fluid, 87
fluid failure description – snow accumulation, 78, 123
fluid failure description – snow accumulation, random, 78, 123
fluid failure description – surface freezing, 78
fluid failure front – definition, 175
fluid failure recognition, 123
fluid failure recognition training for persons conducting pretakeoff contamination checks (FAA), 138
fluid failure recognition training for pilots (FAA), 138
fluid failure, deicing/anti-icing anew upon, 87
fluid failure, early – flaps and slats deployed. See flaps and slats deployed
fluid failure, first areas of – leading edge, 138
fluid failure, initial – downwind wing in crosswind, 123
fluid failure, initial – leading and trailing edges, 123
fluid failure, top edge – definition, 175
fluid failure, type of – adhesion, 175
fluid failure, type of – visual, 175
fluid failure, types of, 175
fluid failure, visual, 176
fluid flow-off – incomplete, 36
fluid flow-off – speed and time dependence, 36
fluid freezing in flight – residual fluid on trailing edge, 138, 158
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – initial qualification test report – aerodynamic acceptance, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – original qualification test data, 62
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV (licensee location) – initial qualification test report – WSET, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV (licensee location) – original qualification test data, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV – initial qualification test report for manufacturing location for licensee, 70
fluid manufacturer – obligation to provide to FAA/TC – additional requested data, 62, 70
fluid manufacturer – obligation to provide to FAA/TC – data – general obligation, 62, 70
fluid manufacturer – obligation to provide to FAA/TC – deadlines, 62, 70
fluid manufacturer – obligation to provide to FAA/TC – Type I – list of fluids to be commercialized by June 01, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I – periodic requalification test report – aerodynamic acceptance, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I – periodic requalification test report – anti-icing performance, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I – restrictions on use of, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – initial qualification test report – WSET, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – endurance time data, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – final name by May 01, 63
fluid manufacturer – obligation to provide to FAA/TC –
Type I (new) – freezing point data, 62
fluid manufacturer – obligation to provide to FAA/TC –
Type I (new) – initial qualification test report – anti-icing
performance, 62
fluid manufacturer – obligation to provide to FAA/TC –
Type I (new) DEG based – endurance time data not
required, 63
fluid manufacturer – obligation to provide to FAA/TC –
Type I (new) EG based – endurance time data not
required, 63
fluid manufacturer – obligation to provide to FAA/TC –
Type I (new) PG based – endurance time data not
required, 63
fluid manufacturer – obligation to provide to FAA/TC –
Type I (new) – unique name, 63
fluid manufacturer – obligation to provide to FAA/TC –
Type II/III/IV – list of fluids to be commercialized by
June 01, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/III/IV periodic requalification test report –
aerodynamic acceptance, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/III/IV periodic requalification test report – anti-
icing performance, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/III/IV periodic requalification test report –
multiple locations, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/III/IV, restrictions on use of, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/IV (new) – endurance time data, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/IV (new) – final name by May 01, 70, 71
fluid manufacturer – obligation to provide to FAA/TC –
Type II/IV (new) – freezing point data, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/IV (new) – unique name, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/IV (new) initial qualification test report –
aerodynamic acceptance, high speed, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type II/IV (new) initial qualification test report – anti-
icing performance, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type III (new) – endurance time data, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type III (new) – final name by May 01, 71
fluid manufacturer – obligation to provide to FAA/TC –
Type III (new) – initial qualification test report –
aerodynamic acceptance, high speed (optional), 70
fluid manufacturer – obligation to provide to FAA/TC –
Type III (new) – initial qualification test report –
aerodynamic acceptance, low speed, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type III (new) – initial qualification test report – anti-
icing performance, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type III (new) – initial qualification test report – freezing
point data, 70
fluid manufacturer – obligation to provide to FAA/TC –
Type III (new) – to be used heated, not heated or both, 71
fluid manufacturer – obligation to provide to FAA/TC –
Type III (new) – unique name, 71
fluid manufacturer – obligation to provide to FAA/TC data
for new manufacturing location for licensee, 70
fluid manufacturer – option not to publish fluid-specific
HOT, 71
fluid manufacturer – sample selection considerations, Type
II/III/IV, 71
fluid manufacturer documentation, 75, 87, 120, 123, See
also endurance time tests, Type II/III/IV – fluid
manufacturer documentation, See also endurance time
tests, Type I – fluid manufacturer documentation
fluid manufacturer documentation – acceptance field tests,
87, 107, 120, 167
fluid manufacturer documentation – aerodynamic
acceptance data, 42, 51, 87, 120, 146, 158, 167
fluid manufacturer documentation – appearance, 42
fluid manufacturer documentation – application equipment
requirements, 114
fluid manufacturer documentation – aquatic toxicity, 42, 51
fluid manufacturer documentation – biodegradability, 42,
51
fluid manufacturer documentation – BOD, 42, 51
fluid manufacturer documentation – certificate of analysis,
87, 107, 120
fluid manufacturer documentation – certificate of
conformance, 167
fluid manufacturer documentation – COD, 42
fluid manufacturer documentation – cold storage stability,
51
fluid manufacturer documentation – color, 42, 87, 120, 167
fluid manufacturer documentation – concentration limits,
87, 120, 167
fluid manufacturer documentation – dry-out exposure to
cold dry air, 51
fluid manufacturer documentation – exposure to dry air, 51
fluid manufacturer documentation – field viscosity check,
120
fluid manufacturer documentation – field viscosity test
limits, 87
fluid manufacturer documentation – field viscosity test
method, 87
fluid manufacturer documentation – filter requirements,
167
fluid manufacturer documentation – flash point, 42, 51, 167
fluid manufacturer documentation – fluid application, 87,
167, 179
fluid manufacturer documentation – fluid name, 87
fluid manufacturer documentation – fluid stability, 42, 51
fluid manufacturer documentation – fluid storage
requirements, 156, 167, 179
fluid manufacturer documentation – fluid temperature
limits, 114, 167
fluid manufacturer documentation – fluid testing, 167, 179
fluid manufacturer documentation – fluid transfer system
requirements, 87, 107, 114, 120, 156, 167, 179
fluid manufacturer documentation – fluid, heat ing of, 87,
107, 120, 167
fluid manufacturer documentation – forbidden mixtures,
167
fluid manufacturer documentation – freezing point, 42
Index

fluid manufacturer documentation – freezing point data, 87, 107, 120, 123, 167
fluid manufacturer documentation – freezing point v
dilution data, 146, 159, 167
fluid manufacturer documentation – freezing point v
dilutions, 42
fluid manufacturer documentation – glycol, presence of
recycled, 42
fluid manufacturer documentation – hard water stability,
42, 51
fluid manufacturer documentation – hardness, maximum
water, 167
fluid manufacturer documentation – HHET, 42, 51
fluid manufacturer documentation – label, 167
fluid manufacturer documentation – label test, 167
fluid manufacturer documentation – LOUT, 43, 51, 146, 159
fluid manufacturer documentation – LOUT for intended
dilutions, 43, 51
fluid manufacturer documentation – materials
compatibility, 43, 51
fluid manufacturer documentation – materials compatibility
data, 146, 159, 167
fluid manufacturer documentation – mixing of different
products, 87
fluid manufacturer documentation – pavement
compatibility, 51
fluid manufacturer documentation – pH limits, 43, 51, 87,
107, 120, 167
fluid manufacturer documentation – physical properties, 51
fluid manufacturer documentation – product information
bulletin, 167
fluid manufacturer documentation – pump requirements,
167
fluid manufacturer documentation – quality assurance
checks, 107
fluid manufacturer documentation – recycled glycol,
presence of, 43
fluid manufacturer documentation – refractive index limits,
43, 51, 87, 107, 120, 123, 167
fluid manufacturer documentation – refractometer, use of,
167
fluid manufacturer documentation – safety data sheet, 43,
51, 87, 107, 114, 124, 167
fluid manufacturer documentation – sampling guidelines,
167
fluid manufacturer documentation – shelf life, 167
fluid manufacturer documentation – specific gravity, 43,
51, 167
fluid manufacturer documentation – specification, fluid,
167
fluid manufacturer documentation – spray distance, 107
fluid manufacturer documentation – storage stability, 43,
51
fluid manufacturer documentation – storage tank
requirements, 87, 107, 120, 167
fluid manufacturer documentation – successive dry out and
rehydration, 51
fluid manufacturer documentation – surface tension, 43, 51,
167
fluid manufacturer documentation – suspended matter
limit, 167
fluid manufacturer documentation – tendency to foam, 43,
51
fluid manufacturer documentation – thermal stability, s
3.3.2, 43
fluid manufacturer documentation – thin film thermal
stability, 51
fluid manufacturer documentation – TOD or COD, 51
fluid manufacturer documentation – toxicity data, 146, 159
fluid manufacturer documentation – toxicity information,
51
fluid manufacturer documentation – trace contaminants, 43,
51
fluid manufacturer documentation – Type I, Type II or
Type IV, 51
fluid manufacturer documentation – Type I/II/III/IV
certificate of conformance, 159, 167
fluid manufacturer documentation – Type I/II/III/IV
technical requirement data, 146, 159
fluid manufacturer documentation – Type II/III/IV
residues, 179
fluid manufacturer documentation – UV light, effect of,
167
fluid manufacturer documentation – viscosity limits, 43, 51,
87, 107, 120, 167
fluid manufacturer documentation – viscosity method,
field, 167
fluid manufacturer documentation – viscosity test limits,
field, 87
fluid manufacturer documentation – viscosity test method,
field, 87
fluid manufacturer documentation – visual check test, 87,
107, 120, 167
fluid manufacturer documentation – water hardness
requirements, 167
fluid manufacturer documentation – WSET, 43, 51
fluid manufacturer licensee – fluid-specific HOT guideline,
71
fluid manufacturer recommendations, compliance with, 183
fluid mixing from different manufacturers, no, 87
fluid mixing of different types, no, 87
fluid mixing system, verification of, 183
fluid name, 63, 71
fluid name – final commercial name, 63, 71
fluid name – formulation change, upon, 63, 71
fluid name – new unique name, 63, 71
fluid name – reformulation, 63, 71
fluid operational limit, 176
fluid residue table, 71
fluid retesting, 71
fluid runway and taxiway deicing/anti-icing compound. See
RDP. liquid
fluid sampling procedure, 87, 183
fluid sampling, nozzle, 183
fluid sampling, nozzle – collection with stand, 87
fluid sampling, nozzle – collection with trash cans, 87
fluid shelf life, 167
fluid slipperiness, 167
fluid specifications, SAE – TC recognized, 167
fluid spills – emergency contact in Canada: CANUTEC,
168
fluid storage. See storage
fluid test frequency – bulk storage, 168
Guide to Aircraft Ground Deicing – Issue 6

fluid test frequency – deicing unit after maintenance, 168
fluid test frequency – deicing unit after repair, 168
fluid test frequency – deicing unit daily and when refilled, 168
fluid test frequency – drums, 168
fluid test frequency – totes, 168
fluid test frequency – upon dilution, 168
fluid test frequency – upon transfer, 168
fluid transfer system – chemical contamination, 87
fluid transfer system – dedicated, 87
fluid transfer system – design, 87
fluid transfer system – fluid manufacturer’s recommendation, 87
fluid transfer system – hoses, 87
fluid transfer system – labeling, 88
fluid transfer system – labeling of discharge points, 88
fluid transfer system – labeling of fill ports, 88
fluid transfer system – no inadvertent mixing, 88
fluid transfer system – no mixing with fluid of different manufacturer, 88
fluid transfer system – no mixing with fluid of different Types of fluids, 88
fluid transfer system – nozzle, 88
fluid transfer system – piping, 88
fluid transfer system – pumps, 88
fluid transfer system – shearing, 88
fluid transfer system – valves, 88
fluid, acceptable – definition, 176
fluid, acceptable – TC does not approve, 159
fluid, approval – guidance (TC), 159
fluid, common, 99
fluid, composition of, 168
fluid, failed – definition, 176
fluid, neat, 143, See footnote 61, See also Type II/III/IV – neat
fluid, new – data required for use with generic HOT, 63
fluid, new – development of fluid-specific HOT, 71
fluid, new – new unique name, mandatory, 63, 71
fluid, new – obligation to provide information to FAA/TC, 63, 71
fluid, Newtonian – definition, 107
fluid, non-Newtonian – definition, 51, 107
fluid, pristine – definition, 176
fluid, pseudoplastic, 52
fluid, pseudoplastic – definition, 51, 88
fluid, qualified – TC does not qualify, 159
fluid, residual – on trailing edge, 138, 159
fluid, supercooled. See crystallization, delayed fluid, thickened. See Type II/III/IV
fluid, thickened – definition, 36
fluids – guidance (TC), 168
foam – forced air application of Type II/III/IV, 103
foam confused as snow, 116
foam confused as snow – training, 107
FOD, 123
fog. See snowfall intensity overestimation due to obscuration
fog – definition, 183
fog, ground – definition, 183
fog, supercooled, 183
Fokker F100 dimensions, 128
Fokker F27 dimensions, 128
Fokker F28 dimensions, 128
Fokker F70 dimensions, 128
Fokker F70/F100 spray area diagram, 107, 128
footwear, 168
forced air, 88, 103, 168
forced air – air pressure at nozzle, 103
forced air – air pressure, maximum, 103
forced air – air velocity, 103
forced air – air velocity v distance, 103
forced air – air volumes, 103
forced air – aircraft safety – debris, 103
forced air – concerns – inadequate application of Type II/III/IV, 138
forced air – concerns – other, 138
forced air – concerns – over aerated Type II/IV – foamy appearance, 138
forced air – concerns – over aerated Type II/IV – frothy appearance, 138
forced air – concerns – unduly aerated Type II/IV – milky white appearances, 138
forced air – debris as projectiles, 103
forced air – definition, 168
forced air – foam formation, 103
forced air – guidance (FAA), 138
forced air – incomplete removal of contaminants, 103
forced air – injected fluid quantity, 103
forced air – mandatory field test (FAA), 138
forced air – modes – alone, 138
forced air – modes – Type II/II/IV applied over the air stream, 138
forced air – modes – with Type I, 138
forced air – noise levels, 103
forced air – personnel safety – noise, 103
forced air – personnel safety – projectiles, 103
forced air – post deicing/anti-icing check, 103
forced air – potential accumulation of contamination in control areas, 103
forced air – potential damage to landing gear, 103
forced air – potential damage to wheel well components, 103
forced air – precautions, 138
forced air – pressure distribution, 103
forced air – pressure loads, average, 103
forced air – pressure loads, peak, 103
forced air – pressure, average, 103
forced air – pressure, peak, 103
forced air – projectile formation, 103
forced air – removal of frozen contamination, 103
forced air – safety trials, 103
forced air – sound level, 103
forced air – with fluid, 103
forced air – with fluid – no HOT, 103
forced air – with heated fluid, 103
forced air – with unheated fluid, 103
forced air – without fluid, 103
formulation change – name change, 63, 71
foundation specification, 48, 57, 58
freezing – definition, 123
freezing drizzle – definition, 88, 107, 123, 183
freezing drizzle – guidance (TC), 168
freezing drizzle subset of supercooled large droplets, 151
freezing fog. See snowfall intensity overestimation due to obscuration, See also HOT precipitation rate
freezing fog – definition, 88, 107, 123, 183
freezing fog v frozen fog, 176
freezing point – definition, 107, 168
freezing point buffer, 168
freezing point buffer – Type I – 10°C, 63, 88, 138
freezing point buffer – Type II/III/IV – 7°C, 71, 88, 138
freezing point buffer, negative, 159
freezing point buffer, negative – definition, 88
freezing point buffer, negative – pre-deicing process, 88
freezing point buffer, reasons for – absorption of precipitation, 168
freezing point buffer, reasons for – difference between OAT and aircraft surface temperature, 138, 168
freezing point buffer, reasons for – differences in aircraft surface materials, 138
freezing point buffer, reasons for – fluid application variation, 168
freezing point buffer, reasons for – inaccuracies in fluid/water mixture volumes, 138
freezing point buffer, reasons for – OAT changes after fluid application, 138, 168
freezing point buffer, reasons for – refractometer measurement variability, 138, 168
freezing point buffer, reasons for – solar radiation, 138
freezing point buffer, reasons for – variability in temperature of applied fluid, 138
freezing point buffer, reasons for – weather changes after fluid application, 168
freezing point buffer, reasons for – wind effects, 138
freezing point buffer, sufficient – wing skin temperature lower than OAT, 88
freezing point depressant – Glycol, 48, 57, 58
freezing point depressant – Glycol, Conventional, 48, 57, 58
freezing point depressant – Glycol, Non-conventional, 48, 57, 58
freezing point depressant – Non-glycol, 48, 57, 58
freezing point depressant, Glycol, Conventional, 43, 52
freezing point depressant, Glycol, Conventional and Non-Conventional, 43, 52
freezing point depressant, Glycol, Non-conventional, 43, 52
freezing point depressant, Non-glycol, 43, 52
freezing point depression, description of, 168
freezing point determination – ASTM D 1177, 168
freezing point determination – first ice crystal formation, 168
freezing point determination – refraction, 168
freezing point measurement. See freezing point determination
freezing rain. See also HOT precipitation rate
freezing rain – definition, 168, 183
freezing rain subset of supercooled large droplets, 151
freezing rain, heavy – definition, 123
freezing rain, light – definition, 88, 108, 123
freezing rain, moderate – definition, 123
freezing rain, operations in – guidance (TC), 168
freezing rain, safety considerations – guidance (TC), 168
friction, runway, 209
Friedemann, Jens, 25
front, cold – definition, 123
front, warm – definition, 123
frost. See also frost, active; HOT, frost; HOT precipitation rate
frost – deceptively dangerous – clean appearance of residual contaminated fluid, 176
frost – deceptively dangerous – drag increase, 138, 159
frost – deceptively dangerous – lift degradation, 138, 159
frost – definition, 88, 108, 123, 183
frost appearance, 138, 159
frost detection – ROGIDS v visual check, 78
frost endurance test, 33
frost formation, 33, 159
frost formation – effect of surface composition, 159
frost formation – effect of surface finish, 159
frost formation conditions, 123, 159
frost formation conditions – cloudless nights, low wind (radiation cooling), 138, 159
frost formation conditions – cold-soaked fuel – risk of fluid below LOUT, 159
frost formation conditions – cold-soaked fuel (conductive cooling), 138, 159
frost formation conditions – low light, shade, obscured sun, 159
frost formation conditions – surface below OAT and at or below frost point, 138, 159
frost formation mechanism – conductive cooling, 138, 159
frost formation mechanism – radiation cooling, 138, 159
frost growth, 33
frost nucleation, 33
frost on fuselage, 123, 159
frost on lower horizontal stabilizer surface, 123
frost on lower wing surface, 123, 138, 159, 179
frost on upper wing surface, 138, 159
frost on wing underside, 189, See frost on lower wing surface
frost point – definition, 139
frost point and dewpoint table, 139, 159
frost point higher than dewpoint, 139
frost point v dewpoint, 139
frost polishing – unacceptable method, 168
frost roughness, 139, 159
frost, acceptable amount undeguing (FAA), 150
frost, active – definition, 88, 108, 123, 139, 159, 183
frost, active – formation conditions, 88, 108
frost, active – guidance (TC), 159
frost, cold soaked fuel, 139
frost, cold soaked fuel – exemption, 139
frost, cold soaked fuel – exemption process (FAA), 139
frost, deicing in active, 159
frost, local, 88, 124
frost, local – definition, 88
frost, local – flightcrew communications, 88
frost, local – fluid application (≥ 50°C) when frost starts to form, 88
frost, local – fluid application and coverage, 88
frost, local – fluid application to clean surface, 88
frost, local – prevention, 88
frost, local – prevention – no HOT, 88
frost, local – prevention – trained personnel, 88
frost, local – removal, 88
frost, local – symmetrical treatment, 88

Index
frost, removal of, 88
frost. See also frost, local, 88
frost/hoarfrost – definition, 88
frozen contaminants – definition, 150
frozen contamination – appearance – frost on treated surface, 67, 76
frozen contamination – appearance – ice crystals, disseminated, 67, 76
frozen contamination – appearance – ice front, 67, 76
frozen contamination – appearance – ice pieces imbedded in fluid, 67, 76
frozen contamination – appearance – ice pieces partially imbedded in fluid, 67, 76
frozen contamination – appearance – ice sheet, 67, 76
frozen contamination – appearance – slush front, 67, 76
frozen contamination – appearance – slush in clusters, 67, 76
frozen contamination – appearance – snow bridges, 67, 76
frozen contamination – appearance – slush in clusters, 67, 76
frozen contamination – appearance – ice crystals, disseminated, 67, 76
frozen contamination – appearance – ice front, 67, 76
frozen contamination – appearance – ice pieces imbedded in fluid, 67, 76
frozen contamination – appearance – ice pieces partially imbedded in fluid, 67, 76
frozen contamination – appearance – snow bridges, 67, 76
frozen contamination – appearance – ice sheet, 67, 76
frozen contamination – appearance – slush front, 67, 76
frozen contamination – appearance – slush in clusters, 67, 76
frozen contamination – appearance – frost on treated surface, 67, 76
frozen contamination – effect on ram air intakes, 150
frozen contamination – effect on propeller performance, 180
frozen contamination – effect on propeller balance, 168
frozen contamination – effect on propeller efficiency, 168
frozen contamination – effect on propeller performance, 180
frozen contamination – effect on ram air intakes, 150
frozen contamination – effect on roll, 189
frozen contamination – effect on stall angle, 168
frozen contamination – effect on stall at lower-than-normal angle of attack, 150
frozen contamination – effect on stall pusher system, 168
frozen contamination – effect on stall speed, 168, 189
frozen contamination – effect on stall warning system, 168, 183
frozen contamination – effect on weight, 150
frozen contamination – effect on winglets, 150
frozen contamination, removal of – by manual means, 168, 179
frozen contamination, removal of – from cockpit windows, 88
frozen contamination, removal of – from elevator, 88
frozen contamination, removal of – from engine fan blades, 88
frozen contamination, removal of – from engines, 88
frozen contamination, removal of – from flaps, 88
frozen contamination, removal of – from fuselage, 88
frozen contamination, removal of – from hard wing aircraft, 88
frozen contamination, removal of – from horizontal stabilizer, 88
frozen contamination, removal of – from landing gear, 88
frozen contamination, removal of – from lower wing surface, 88
frozen contamination, removal of – from nose, 88
frozen contamination, removal of – from propeller driven aircraft, 88
frozen contamination, removal of – from radome, 88
frozen contamination, removal of – from underwing surface, 89
frozen contamination, removal of – from vertical surfaces, 89
frozen contamination, removal of – from wheel bays, 89
frozen contamination, removal of – from windows, 189
frozen contamination, removal of – from wings, 89
frozen contamination, removal of – general strategy, 89
frozen contamination, removal of – with air heaters, 168
frozen contamination, removal of – with brooms, 89, 159, 168, 183
frozen contamination, removal of – mandatory tactile check (TC), 159
frozen contamination, removal of – with brushes, 168, 183
frozen contamination, removal of – with fluid, 89
frozen contamination, removal of – with fluid injected into forced air, 89
frozen contamination, removal of – with forced air, 89, 103, 179, 183
frozen contamination, removal of – with forced air and fluid, 103
frozen contamination, removal of – with forced air at DDF, 96
frozen contamination, removal of – with frozen contamination, removal of – with negative freezing point buffer hot fluids, 89
frozen contamination, removal of – with heat, 89
frozen contamination, removal of – with hot water, 89, 160, 179
frozen contamination, removal of – with infrared, 89, 179, 183
frozen contamination, removal of – with infrared at DDF, 96
frozen contamination, removal of – with portable spraying equipment, 183
frozen contamination, removal of – with ropes, 168
frozen contamination, removal of – with scrapers, 168
frozen contamination, removal of – with steam at DDF, 96
fuel savings, 33
fueling, effect of – adhesion of dry snow, 139
gantry, 156
Index

gate departure check – APU free of contamination, 108, 116

gate departure check – cockpit windows clean, 108, 117

gate departure check – critical sensing devices free of contamination, 108, 116

gate departure check – doors and door seals free of contamination, 108, 116

gate departure check – passengers informed of remote deicing, 108, 117

gate departure check – tires not frozen to ramp, 108, 117

gate hold procedure, 99

gel residue table, AMIL, 71

generic HOT guidelines. See HOT, generic

GIDS. See also ROGIDS

GIDS – definition, 178

global aircraft deicing standards, 27, 177

global aircraft deicing standards – EASA recommendation to use, 177

global aircraft deicing standards, list of, 29, 177

global aircraft standards – IATA initiative, 27

glycerine. See Glycol, Non-conventional – glycerine, See Glycol, Non-conventional – glycerine

Glycol – definition, 43, 52

glycol discharge guidelines (Canada), 168

glycol management, 169

glycol mitigation, 96, 169

glycol pan measurement – definition, 151, 173

glycol recovery vehicle. See GRV

Glycol, Conventional, 48, 57, 58

Glycol, Conventional – definition, 43, 52

Glycol, Conventional – diethylene glycol, 43, 52

Glycol, Conventional – ethylene glycol, 43, 52

Glycol, Conventional – propylene glycol, 43, 52

Glycol, Conventional and Non-conventional – definition, 43, 52

Glycol, Non-. See Non-glycol, See Non-glycol

Glycol, Non-conventional, 48, 57, 58

Glycol, Non-conventional – 1,3-propanediol, 43, 52

Glycol, Non-conventional – definition, 43, 52

Glycol, Non-conventional – glycerine, 43, 52

Glycol, Non-conventional – organic non-ionic diols and triols, 43, 52

Glycol, Non-conventional – organic non-ionic diols and triols, mixtures of, 43, 52

Glycol, Non-conventional – organic non-ionic diols and triols, mixtures with Conventional Glycol, 43, 52

glycol, recycled. See Type I – recycled glycol

ground coordinator – definition, 96

ground crew knowledge of – critical areas, 183

ground crew knowledge of – deicing anti-icing, factors affecting, 183

ground crew knowledge of – deicing/anti-icing methods, 183

ground crew knowledge of – deicing/anti-icing methods, limitations of, 183

ground crew knowledge of – hazards of ice, snow and frost, 183

ground deicing and anti-icing program, 89

ground deicing/anti-icing program (FAA) – approval, FAA, 150

ground deicing/anti-icing program (FAA) – program elements, 150

ground deicing/anti-icing program (FAA), FAA approved – operations in lieu of, 150

ground ice detection system. See GIDS, See also ROGIDS

ground icing conditions, 130

ground icing conditions – definition, 169

ground icing program, approved (TC), 169

GRV, 99

Gulfstream IV dimensions, 128

Gulfstream spray area diagram, 108, 128

hail – definition, 89, 108, 169

hail intensity, small v ice pellet intensity, 139

hail, small – definition, 124

hail, small – equivalent to ice pellets, 160

hail, small – intensity, 139

hail, small – operations in, 139

hand signals, 96

handedness, aircraft, 128

hangar, fluid application in, 139, 160

hangar, fluid application in – start of HOT, 139

hangar, fluid application in – T-tail aircraft, 139, 160

hangar, use of, 139, 169

hard wing – definition, 139, 150

hard wing – tactile check and visual check with pretakeoff contamination check when HOT exceeded, 139

hard wing – tactile check when temperature at or below 10°C and high humidity, 139

hard wing – tactile check with cold soaked wings, 139

hard wing – visual and tactile check after post deicing/anti-icing check, 139

harness, 169

Hawker 800 XP dimensions, 128

Hawker Horizon dimensions, 128

Hawker Siddeley HS 748 spray area diagram, 108, 128

hazards of ice, snow and frost, 124, 169, 180, 183, See also frozen contamination – effect on

haze. See snowfall intensity overestimation due to obscuration

headsets, 169

headwear, protective, 169

health authority regulations, compliance with, 183

heat loss, 89, 108, 117, 169, 183

height overall, aircraft, 128

helicopter. See rotorcraft

Hempelmann, Hans W., 25

HHET – air temperature, 40

HHET – calibration, 40

HHET – definition, 169

HHET – description, 40

HHET – failure criteria, 40

HHET – failure zone, 40

HHET – report, 40

HHET – fluid preparation, 40

HHET – fluid sheared, 40

HHET – fluid temperature, 40

HHET – humidity generator, 40

HHET – relative humidity, 40

HHET – test chamber, 40

HHET – test description, 40
HHET – test method, 40
HHET – test plate, 40
HHET – test plate cleanliness, 40
HHET – test plate temperature, 40
HHET – water droplet size, 40
HHET, Type I – 20 minutes minimum, 43
HHET, Type II 50/50 – 0.5 hours minimum, 52
HHET, Type II 75/25 – 5 hours minimum, 52
HHET, Type II neat – 4 hours minimum, 52
HHET, Type III 75/25 – determine and report, 52
HHET, Type III 50/50 – determine and report, 52
HHET, Type III neat – 2 hours minimum, 52
HHET, Type IV 50/50t – 0.5 hours minimum, 52
HHET, Type IV 75/25 – 2 hours minimum, 52
HHET, Type IV neat – 8 hours minimum, 52
high humidity – definition, 108, 183
high humidity endurance test. See HHET
high humidity on cold soaked wing, 124
high humidity on cold soaked wing – definition, 108
high viscosity pre-production sample – MOWV, 71
Hille, Joel, 188
hoarfrost, 124, 139, See also frost
hoarfrost – definition, 89, 108, 124, 139, 169, 183
hoarfrost on fuselage, 160
holdover time. See HOT
holdover time determination system. See HOTDS
HOT, 89
HOT – decision making criterion (TC), 160
HOT – definition, 36, 63, 71, 89, 150, 151, 156, 169, 173, 176, 183, 189
HOT – effect of aircraft surface coating, 89
HOT – estimated time of protection, 89
HOT – FAA/TC harmonization initiative, 160
HOT – failure mode – visual, 63, 71
HOT – publication by FAA and Transport Canada, 89
HOT – responsibility of HOT guideline data remains with user, 89
HOT – Type I/II/III/IV frost, 146
HOT – weather conditions, in improving, 160
HOT – weather conditions, in worsening, 160
HOT (EASA) – AEA recommendation, 180
HOT (FAA), development of – use of SAE ARP5485 and SAE ARP5945, 139
HOT (ICAO) – FAA/TC HOT, 184
HOT 76% adjusted – regression calculations, 148
HOT for METAR code GS. See METAR GS, interpretation of
HOT from electronic hand-held devices. See eHOT
HOT guidance (EASA), 179, 180
HOT guidance (FAA), 139, 146
HOT guidance (ICAO), 184
HOT guidance (TC), 160, 169
HOT guideline – definition, 63, 71, 169
HOT guideline – validity – LOWV, 71
HOT guideline, fluid specific Type I – none, 63
HOT guideline, fluid-specific – definition, 63, 71
HOT guideline, generic – definition, 63, 71
HOT guideline, publication date for, 63, 71
HOT guideline, publication timeline for, 63
HOT guidelines – definition, 176
HOT guidelines notes and cautions – mandatory use of, 139
HOT less than protection time, 176
HOT precipitation categories – freezing fog, 139
HOT precipitation categories – frost, 139
HOT precipitation categories – snow, 139
HOT precipitation rate – freezing fog, 139
HOT precipitation rate – freezing rain, light – less or equal to 2.5 mm/h, 139
HOT precipitation rate – frost – low but not quantified, 139
HOT precipitation rate – snow, light – 0.4–1.0 mm/h, 4–10 g/dm2/h, 139
HOT precipitation rate – snow, moderate – 1.0–2.5 mm/h [10–25 g/dm2/h], 139
HOT precipitation rate – snow, very light – 0.3–0.4 mm/h, 3–4 g/dm2/h, 139
HOT range – definition, 150
HOT reduction – flaps and slats deployed. See HOT, 76% adjusted – flaps and slats deployed
HOT regression information – changes in 2017-2018, 148, 162
HOT regression limitations, 148, 162
HOT regression limitations – annual update, 173
HOT regression limitations – capping for freezing drizzle 2 h (TC), 173
HOT regression limitations – capping for freezing fog 4 h (TC), 173
HOT regression limitations – capping for light freezing rain 2 h (TC), 173
HOT regression limitations – capping for rain on cold soaked wing 2 h (TC), 173
HOT regression limitations – capping for snow 2 h (TC), 173
HOT regression limitations – caution outside precipitation rate limits, 148, 162
HOT regression limitations – no allowance times, 148, 162
HOT regression limitations – no interpolation for Type II, III, IV non-standard dilutions, 148
HOT regression limitations – no interpolation for Type II/III/IV non-standard dilutions, 148
HOT regression limitations – no regression coefficients for frost, 148, 162
HOT regression limitations – use at > 0°C, 148, 162, 173
HOT regression limitations – use of freezing drizzle precipitation rate ≤ 25 g/dm2/h, 173
HOT regression limitations – use of freezing drizzle precipitation rate ≥ 5 g/dm2/h, 173
HOT regression limitations – use of freezing fog precipitation rate ≤ 25 g/dm2/h, 173
HOT regression limitations – use of freezing fog precipitation rate ≥ 5 g/dm2/h, 173
HOT regression limitations – use of freezing rain precipitation rate ≤ 25 g/dm2/h, 173
HOT regression limitations – use of freezing rain precipitation rate ≥ 5 g/dm2/h, 173
HOT regression limitations – use of precipitation rate ≥ 2 g/dm2/h, 173
HOT regression limitations – use of rain on cold soaked wing precipitation rate ≤ 75 g/dm2/h, 173
HOT regression limitations – use of regression coefficients equivalent to those published by TC, 173
HOT regression limitations – use of regression coefficients published by TC, 173
Index

HOT regression limitations – use of snow precipitation rate ≤ 50 g/dm²/h, 173
HOT regression limitations – use with HOTDS conforming to regulations (TC), 148, 162
HOT table synonym for HOT guideline, 63, 71
HOT tables – definition, 151
HOT temperature limits, 139
HOT v allowance time, 139, 160
HOT v taxiing time, 156
HOT v time from start of last step to takeoff clearance, 156
HOT values, capping of. See HOT, preparation of Type II/III/IV – HOT values, capping of. HOT guideline, 63, 71
HOT values, rounding of. See HOT, preparation of Type II/III/IV – HOT values, rounding, See HOT, preparation of Type I – HOT values, rounding of
HOT variables – active meteorological condition, 139
HOT variables – fluid concentration, 139
HOT variables – OAT, 139
HOT variables – precipitation intensity, 139
HOT variables – precipitation type, 139
HOT water. See frozen contamination, removal of – with hot water
HOT water deicing. See deicing unit – hot water deicing
HOT, 74% adjusted – regression calculations, 162
HOT, 76% adjusted – flaps and slats deployed, 139, 146
HOT, 76% adjusted v standard [unadjusted]. See flaps and slats deployed – guidance
HOT, effect of wind on, 140
HOT, end of, 89, 150, 156
HOT, end of (EASA) – at fluid failure, 180
HOT, end of (EASA) – at the beginning of the takeoff roll (fluid shedding), 180
HOT, FAA, 146
HOT, FAA – changes for winter 2017-2018, 146
HOT, fluid product names, 63
HOT,fastcall of hot water deicing unit – hot water deicing
HOv, 74% adjusted – regression calculations, 162
HOT, 76% adjusted – flaps and slats deployed, 139, 146
HOT, 76% adjusted v standard [unadjusted]. See flaps and slats deployed – guidance
HOT, effect of wind on, 140
HOT, end of, 89, 150, 156
HOT, end of (EASA) – at fluid failure, 180
HOT, end of (EASA) – at the beginning of the takeoff roll (fluid shedding), 180
HOT, FAA, 146
HOT, FAA – changes for winter 2017-2018, 146
HOT, flaps and slats deployed. See HOT, 76% adjusted –
flaps and slats deployed
HOT, format by operator, 184
HOT, frost, 140, 146, 160
HOT, frost – guidance (TC), 160
HOT, maximum – neat unheated Type II/IV, 89
HOT, no – freezing rain, 140
HOT, no – freezing rain, heavy, 140, 160
HOT, no – freezing rain, moderate, 140, 160
HOT, no – hail, 140, 160
HOT, no – hail, small. But see allowance time, 140
HOT, no – ice pellets. But see allowance time
HOT, no – ice pellets mixed with other precipitation. But see allowance time, 140
HOT, no – ice pellets, light. But see allowance time, 140
HOT, no – ice pellets, moderate. But see allowance time, 140
HOT, no – METAR code GR, 140
HOT, no – snow heavy, 160
HOT, no – snow, heavy – takeoff under special dispatch procedures (FAA), 140
HOT, no – Type I applied with forced air, 103
HOT, no – Type I unheated, 140
HOT, no (EASA) – freezing precipitation with high water content, 180
HOT, no (EASA) – freezing rain, 180
HOT, no (EASA) – hail, 180
HOT, no (EASA) – heavy snow, 180
HOT, no (EASA) – high wind velocity, 180
HOT, no (EASA) – ice pellets, 180
HOT, no (ICAO) – unspecified weather conditions, 184
HOT, no v no takeoff, 140
HOT, preparation of Type I – ready-to-use dilutions, 64
HOT, preparation of Type I – cautions – HOT reduced – aircraft skin temperature lower than OAT, 63
HOT, preparation of Type I – cautions – no inflight-protection, 63
HOT, preparation of Type I – cautions – protection time shortened – heavy precipitation rates, 63
HOT, preparation of Type I – cautions – protection time shortened – heavy weather, 63
HOT, preparation of Type I – cautions – protection time shortened – jet blast, 63
HOT, preparation of Type I – cautions – protection time shortened – high moisture content, 63
HOT, preparation of Type I – cautions – protection time shortened – high winds, 63
HOT, preparation of Type I – cells, 63
HOT, preparation of Type I – date of obsolescence, 63
HOT, preparation of Type I – date of revision, 63
HOT, preparation of Type I – fluid product names, 63
HOT, preparation of Type I – format, 63
HOT, preparation of Type I – generic, 63
HOT, preparation of Type I – generic – unchanging, 63
HOT, preparation of Type I – HOT values from R&D, 63
HOT, preparation of Type I – HOT values not from endurance time data, 63
HOT, preparation of Type I – HOT values range, 64
HOT, preparation of Type I – licensee, 64
HOT, preparation of Type I – new fluids, 64
HOT, preparation of Type I – notes, 64
HOT, preparation of Type I – obsolete data, removal of, 64
HOT, preparation of Type I – precipitation categories, 64
HOT, preparation of Type I – precipitation categories – freezing drizzle, 64
HOT, preparation of Type I – precipitation categories – freezing fog or ice crystals, 64
HOT, preparation of Type I – precipitation categories – frost, active, 64
HOT, preparation of Type I – precipitation categories – light freezing rain, 64
HOT, preparation of Type I – precipitation categories – rain on cold soaked wing, 64
HOT, preparation of Type I – precipitation categories – snow, snow grains or snow pellets, 64
HOT, preparation of Type I – removal of obsolete fluid data, 64
HOT, preparation of Type I – sample selection, 64
HOT, preparation of Type I – sample selection – fluid manufacturer considerations, 64
HOT, preparation of Type I – temperature ranges, 64
HOT, preparation of Type I – timeline, 64
HOT, preparation of Type I generic – aluminum materials, 64
HOT, preparation of Type I generic – composite materials, 64
HOT, preparation of Type I generic – frost, active, 64
HOT, preparation of Type II – generic – to exclude Type IV data, 71
HOT, preparation of Type II/III/IV – cautions, 71
HOT, preparation of Type II/III/IV – cautions – HOT reduced – jet blast, 71
HOT, preparation of Type II/III/IV – cautions – HOT reduced – aircraft skin temperature lower than OAT, 71
HOT, preparation of Type II/III/IV – cautions – HOT reduced – high winds, 71
HOT, preparation of Type II/III/IV – cautions – no inflight-protection, 71
HOT, preparation of Type II/III/IV – cautions – protection time shortened – heavy precipitation rates, 71
HOT, preparation of Type II/III/IV – cautions – protection time shortened – heavy weather, 71
HOT, preparation of Type II/III/IV – cautions – protection time shortened – high moisture content, 71
HOT, preparation of Type II/III/IV – cells, 71
HOT, preparation of Type II/III/IV – date of issue, 71
HOT, preparation of Type II/III/IV – date of obsolescence, 71
HOT, preparation of Type II/III/IV – date of revision, 71
HOT, preparation of Type II/III/IV – fluid product names, 71
HOT, preparation of Type II/III/IV – fluid retesting, 71
HOT, preparation of Type II/III/IV – fluid-specific – licensees, 71
HOT, preparation of Type II/III/IV – fluid-specific – manufacturer option not to publish, 71
HOT, preparation of Type II/III/IV – format, 72
HOT, preparation of Type II/III/IV – generic, 72
HOT, preparation of Type II/III/IV – HOT values from endurance time data, 72
HOT, preparation of Type II/III/IV – HOT values range, 72
HOT, preparation of Type II/III/IV – HOT values, capping of, 72
HOT, preparation of Type II/III/IV – HOT values, rounding of, 72
HOT, preparation of Type II/III/IV – new fluids, 72
HOT, preparation of Type II/III/IV – notes, 72
HOT, preparation of Type II/III/IV – obsolete data, removal of, 72
HOT, preparation of Type II/III/IV – precipitation categories, 72
HOT, preparation of Type II/III/IV – precipitation categories – freezing drizzle, 72
HOT, preparation of Type II/III/IV – precipitation categories – freezing fog or ice crystals, 72
HOT, preparation of Type II/III/IV – precipitation categories – frost, active, 72
HOT, preparation of Type II/III/IV – precipitation categories – light freezing rain, 72
HOT, preparation of Type II/III/IV – precipitation categories – rain on cold soaked wing, 72
HOT, preparation of Type II/III/IV – precipitation categories – snow, snow grains or snow pellets, 72
HOT, preparation of Type II/III/IV – removal of obsolete data, 64, 72
HOT, preparation of Type II/III/IV – removal of obsolete fluid data, 72
HOT, preparation of Type II/III/IV – sample selection, 72
HOT, preparation of Type II/III/IV – sample selection – fluid manufacturer considerations, 72
HOT, preparation of Type II/III/IV – temperature ranges, 72
HOT, preparation of Type II/III/IV – timeline, 72
HOT, preparation of Type III – generic – none published, 72
HOT, preparation of Type IV – generic – to exclude Type II data, 72
HOT, publication by the FAA and Transport Canada, 25
HOT, purpose of, 140
HOT, reduction of – heavy precipitation rates, 89, 184
HOT, reduction of – high moisture content precipitation, 89
HOT, reduction of – high wind velocity, 89, 184
HOT, reduction of – jet blast, 89, 184
HOT, reduction of – wing skin temperature lower than OAT, 89, 184
HOT, start of, 89, 150, 156, 169, 180, 184
HOT, start of – for fluid application in a hangar, 140
HOT, TC, 160
HOT, TC – changes for winter 2017-2018, 160
HOT, TC – mandatory use of TC application tables, 160
HOT, Type I – aluminum surface, 146, 160
HOT, Type I – aluminum v composite surface – how to select, 140, 160
HOT, Type I – composite surface, 146, 160
HOT, Type I – guidance (FAA), 140
HOT, Type I – metal surface, 140
HOT, Type I – titanium surface, 140
HOT, Type I generic – regression calculations, 148, 162
HOT, Type I generic – regression coefficients, 148, 162
HOT, Type II – regression grandfathered data obsolete, 148, 162
HOT, Type II fluid specific – regression calculations, 148, 162
HOT, Type II fluid specific – regression coefficients, 148, 162
HOT, Type II fluid-specific, 148, 162
HOT, Type II generic – use fluid-specific LOWV, 148, 163
HOT, Type II generic – regression calculations, 148, 163
HOT, Type II fluid-specific, 148, 163
HOT, Type II generic – fluid-specific LOUT, mandatory use of, 140
HOT, Type II generic – HOT minimum (worst case) values of all Type II fluids, 140, 148, 160, 162
HOT, Type II generic – regression calculations, 148, 162
HOT, Type II generic – regression coefficients, 148, 163
HOT, Type II generic – use fluid-specific LOWV, 160
HOT, Type II/IV non-standard dilutions, 140, 147
HOT, Type II/III/IV – guidance, general, 140
HOT, Type II/IV – heated v unheated fluid, 140
HOT, Type III – temperature specific, 147
HOT, Type II/IV – heated v unheated fluid, 140
HOT, Type III – temperature specific, 147
HOT, Type III fluid specific – regression calculations, 148, 163
HOT, Type III fluid specific – regression coefficients, 148, 163
HOT, Type III fluid-specific, 147, 160
HOT, Type III generic – none, 147
HOT, Type III generic – not issued, 140, 160
HOT, Type IV fluid specific – regression calculations, 148, 163
HOT, Type IV fluid specific – regression coefficients, 148, 163
HOT, Type IV fluid-specific, 147, 160
Index

HOT, Type IV generic, 147, 160
HOT, Type IV generic – fluid-specific LOUT, mandatory use of, 140
HOT, Type IV generic – HOT minimum (worst case) values of all Type IV, 148, 163
HOT, Type IV generic – HOT minimum (worst case) values of all Type IV fluids, 140, 160
HOT, Type IV generic – LOWV, fluid-specific, 160
HOT, Type IV generic – regression calculations, 148, 163
HOT, Type IV generic – regression coefficients, 148, 163
HOT, Type IV generic – use fluid-specific LOWV, 160
HOT, validity of – LOWV, 72
HOT, variable affecting, 184
HOT, variables affecting, 150
HOTDR – definition, 173
HOTDR, content of, 173
HOTDS, 140, 148, 163
HOTDS – definition, 173
HOTDS – guidance (FAA), 151
HOTDS – WSDMM, 94
HOTDS continuously integrated measurement system – definition, 173
HOTDS discrete measurement system – definition, 173
HOTDS subset of LWES, 151
HOTDS technical requirements (TC), 173
HOWV – definition, 72
HOWV – manufacturer consideration in selecting sample for high viscosity pre-production sample, 72
HOWV – relation to high viscosity pre-production sample, 72
humidity, relative – definition, 124
HUPR – definition, 72
HUPR, snow, 148, 163
hydraulic fluid – effect on carbon brake, 201
hydrophilic surface – definition, 33
hydrophobic surface – definition, 33
hydrophobic surface – icedephobic properties, does not imply, 33
hygroscopic – definition, 201
IAC, 25
IAI 1125Astra SPX dimensions, 128
IAI Galaxy dimensions, 128
IATA, 25
Iberia IB3195 collision at Munich airport, 24
ICAO, 25
ICAO – deicing/anti-icing bibliography, 184
ICAO alphabet, 117
ICAO Doc 4444, 186
ICAO Doc 9640-AN/940, 181
ICAO language proficiency rating scale, 108, 114, 117
ice – definition, 169, 176
ice accretion – water droplet impact resistance, 33
ice accretion, in-flight, 33, 89, 150
ice accumulation test, static, 33
ice adhesion test – centrifuge ice adhesion test, 33
ice adhesion test – zero degree cone test, 33
ice contamination, critical – definition, 78
ice contamination, critical – probability estimate, 78
ice crystals. See also dry snow, See also dry ice crystals
ice crystals – definition, 108
ice detection camera. See ROGIDS
ice detection system – aircraft mounted, 184
ice detection system – enclosed cabin, optional equipment for, 104
ice detection system, ground. See ROGIDS
ice detection system, remote on-ground. See ROGIDS
ice house – definition, 96, 169
ice melting test. See RDP ice melting test
ice melting test for RDP. See RDP ice melting test
ice pellet intensity v small hail intensity, 140
ice pellets – definition, 89, 108, 124, 169
ice pellets – equivalent to small hail, 160
ice pellets – visual fluid failure of HOT not applicable, 140
ice pellets on cold dry aircraft. See also dry snow
ice penetration test. See RDP ice penetration test
ice shedding, 33
ice undercutting test. See RDP ice undercutting test
ice undercutting test, RDP. See RDP ice undercutting test
ice, clear. See clear ice
ice, ground-accumulated – definition, 189
ice, ground-accumulated – removal before engine start-up, 189
ice, impact. See ice accretion, in-flight
ice, light, removal of, 89
ice, operational – definition, 189
ice, operational – removal by engine run-ups, 189
ice, removal of, 89
ice, removal of – training, 108
iceman – definition, 96
icing conditions, AFM – definition, 189
icing conditions, AFM – ice, snow or slush on ramps, taxiways or runways, 189
icing conditions, AFM – visible moisture with visibility of one statute mile or less, 189
icing conditions, AFM ground – OAT ≤ 10°C, 189
icing conditions, AFM in flight – total air temperature ≤ 10°C, 189
icing research, 26
icing, ground, 184
icing, in-flight, 184
illuminance – definition, 78
Ilyushin IL-114 dimensions, 128
Ilyushin IL-62 dimensions, 128
Ilyushin IL62 spray area diagram, 108, 128
Ilyushin IL-76 dimensions, 128
Ilyushin IL76 spray area diagram, 108, 128
Ilyushin IL-86 dimensions, 128
Ilyushin IL-96 dimensions, 128
Ilyushin IL-96M dimensions, 128
impact ice. See ice accretion, in-flight
improvement, continuous, 130
infrared deicing, 89
infrared deicing – functional description, 89
infrared deicing facilities, 153
infrared deicing facility – general requirements, 89
infrared deicing facility – procedure for aircraft inspection, 89
infrared deicing facility – procedure for anti-icing aircraft, 89
infrared deicing facility – procedure for deicing aircraft, 89
infrared deicing facility – ROGIDS recommended, 156
infrared deicing facility, design of, 156
infrared deicing facility, fabrication of, 156

infrared heat deicing method – definition, 169
infrared heat systems, 169
injury to deicing operator, 169
inspection, tactile. See also check, tactile
inspection, tactile (TC) – definition, 169
ISO 9001, 130
Kretschmer, Norman, 25
Kuopio Finland tests, 36
laboratories, testing – Anti-icing Materials International Laboratory (AMIL), 147, 160
laboratories, testing – APS Aviation, 147, 160
laboratories, testing – Scientific Material International (SMI), 147, 160
LaGuardia Airport, 23
language proficiency, ICAO, 108
leading edge – aerodynamically critical, 140
leading edge devices, 169
leading edge thermal anti-icing system – dehydration of Type II/III/IV, 37
leading edge, heated, 37
Learjet 31A dimensions, 128
Learjet 45 dimensions, 128
Learjet 60 dimensions, 128
Learjet spray area diagram, 108, 128
Let L410 dimensions, 128
Let L610G dimensions, 128
lift loss, asymmetric, 176
liquid runway and taxiway deicing/anti-icing compound. See RDP, liquid
liquid water equivalent. See LWE
list of fluids (FAA), 147
list of fluids (FAA) – use of, 140
list of fluids (TC), 160
list of fluids, FAA/Transport Canada – addition of new fluid, 72
list of fluids, FAA/Transport Canada – addition of new Type I fluid, 64
list of fluids, FAA/Transport Canada – definition, 64, 72
list of fluids, FAA/Transport Canada – fluid manufacturer deadline to provide data – June 01, 64, 72
list of fluids, FAA/Transport Canada – publication process, 64, 72
list of fluids, FAA/Transport Canada – publication timeline, 64, 72
list of fluids, FAA/Transport Canada – removal of obsolete data, 64, 72
local frost. See frost, local
Lockheed C-130 spray area diagram, 108, 128
Lockheed Galaxy C5 dimensions, 128
Lockheed Hercules C-130J dimensions, 128
Lockheed L-1011 spray area diagram, 108, 128
lockout procedure, 130
lot acceptance – Type II/III/IV, 54
lot, Type I – definition, 43
lot, Type II/III/IV – definition, 52
LOUT – calculation examples, 141, 169
LOUT – definition, 37, 89, 124, 141, 147, 160, 178
LOUT – freezing point buffer, 141
LOUT – wing temperature lower than OAT, 89
LOUT for high speed aircraft, 141
LOUT for low speed aircraft, 141
LOUT table (FAA), 147
LOUT table (TC), 161
LOUT, list of, 141
LOUT, maximum concentration for Type I, 141
LOUT, multiple – for Type II/III/IV, 141
LOUT, Type I – definition, 64
LOUT, Type II/III/IV – definition, 52, 72
low speed ramp. See aerodynamic acceptance test – low speed ramp
lower sales specification viscosity limit. See viscosity limit, lower sales specification
lowest on-wing viscosity. See LOWV
lowest operational use temperature. See LOUT
LOWV – definition, 72, 161
LOWV – for Type II generic HOT, 161
LOWV – for Type IV generic HOT, 161
LOWV – HOT validity, 72
LOWV – lower than lower sales specification viscosity limit, 72
LOWV – manufacturer considerations in selecting sample for endurance testing, 72
LOWV table (FAA), 147
LOWV table (TC), 161
lubricant, aircraft – definition, 201
LUPR – definition, 72
LUPR, snow, 148, 163
LWE rate – definition, 151
LWE sampling time – definition, 151
LWE system, 141
LWES, 94
LWES – authorization for freezing drizzle (FAA), 151
LWES – authorization for freezing rain (FAA), 152
LWES – authorization for snow (FAA), 152
LWES – authorization for supercooled large droplets (FAA), 152
LWES – authorization process (FAA), 152
LWES – check time, 152
LWES – definition, 152
LWES – endurance time regression equation, use of, 152
LWES – guidance (FAA), 152
LWES – HOT, 152
LWES – maintenance log – guidance (FAA), 152
LWES – maintenance manual – guidance (FAA), 152
LWES – performance specification (FAA), 152
LWES – performance testing – guidance (FAA), 152
LWES – quality assurance – guidance (FAA), 152
LWES – system description – guidance (FAA), 152
LWES – testing specification (FAA), 152
LWES – training manual – guidance (FAA), 152
LWES – ultrasonic wind sensor performance standards (FAA), 152
LWES – user manual – guidance (FAA), 152
LWES – verification of CT – guidance (FAA), 152
LWES – verification of HOT – guidance (FAA), 152
LWES – wind speed sensor performance standard (FAA), 152
LWES superset of check time determination system, 152
LWES superset of HOTDS, 152
LWES, activation of – guidance (FAA), 152
LWES, construction of – guidance (FAA), 152
LWES, design of – guidance (FAA), 152
LWES, installation of – guidance (FAA), 152
LWES, maintenance of – guidance (FAA), 152
Index

LWES, procurement of – guidance (FAA), 152
LWES, siting of – guidance (FAA), 152
management, senior – definition, 130
maneuvering area – definition, 169
maneuvering area for deicing units, 156
masks, 169
master lock procedure. See tag-out procedure
maximum on-wing viscosity. See HOWV
McDonnell Douglas DC-10/MD-10/MD-11 spray area diagram, 108, 128
McDonnell Douglas DC-8 spray area diagram, 108, 128
McDonnell Douglas DC-9 spray area diagram, 108, 128
McDonnell Douglas MD-80/MD-90 spray area diagram, 108, 128
melting – definition, 124
message boards, 99, 169
message boards – aircraft entry, 99
message boards – aircraft exit, 99
message boards – aircraft positioning, 99
message boards – design requirements, 99
message boards – inspection and testing, 99
message boards – minimum design requirement, 99
message boards – purpose, 99
message boards – safety requirements, 99
message boards – system malfunction, 99
message boards – technical requirements, 99
message boards – use at CDF, 156
message boards – use at DDF, 96
METAR, 124
METAR code GR – is not small hail, 141
METAR code GR – means hail, 141
METAR code GR – no allowance time, 141
METAR code GR – no HOT, 141
METAR code GS – guidance (FAA), 141
METAR code GS – use of ice pellet and small hail
allowance time outside Canada, 161
METAR code GS – use of snow HOT in Canada, 161
METAR code GS (WMO) – means small hail or snow pellets, 141
METAR code GS guidance (TC), 161
METAR code GS in Canada – means snow pellets, 141
METAR code GS in Canada – use of snow HOT, 141
METAR code GS in US – if small hail, use of ice pellet and small hail allowance times, 141
METAR code GS in US – if snow pellets, use snow HOT, 141
METAR code GS in US – if unknown, use of ice pellet and small hail allowance times, 141
METAR code GS in US – means small hail or snow pellets, 141
METAR code GS means small hail or snow pellets outside Canada, 161
METAR code GS means snow pellets in Canada, 161
METAR code GS, interpretation of, 141, 161
METAR code SHGS in Canada – means small hail, 141
METAR code SHGS in Canada – use of ice pellet and small hail allowance times, 141
METAR code SHGS means small hail in Canada, 161
METAR snowfall intensity underestimation. See snowfall intensity, METAR – underestimation
meteorological terminal aviation routine weather report. See METAR
MIL-A-8283D specification – not updated, 189
mite. See snowfall intensity overestimation due to obscuration
Mitsubishi MU-2 dimensions, 128
Mitsubishi YS-11, 37
mobile deicing equipment – enclosed cabin, 104
moisture, visible – definition, 184
Montreal (Mirabel) collision, 23
Moshansky, Virgil P., 22, 23
MOWV – definition, 161
MSDS. See SDS
mud, 209
Munich airport, 24
Myers, Barry B., 173
name. See fluid name
National Transportation Safety Board, 21, 23
NCAR, 74
negative buffer, 89
negative freezing point buffer. See freezing point buffer, negative
new fluid. See fluid, new
no HOT. See HOT, no
no spray – air stream direction detectors, 90
no spray – angle of attack airflow sensors, 90
no spray – brakes, 90
no spray – control surface cavities, 90
no spray – exhausts, 90
no spray – intakes and outlets, 90
no spray directly – air stream direction detectors, 184
no spray directly – angle of attack airflow sensors, 184
no spray directly – APU, 189
no spray directly – brake bay, 184
no spray directly – brakes, 184, 189
no spray directly – cabin windows, 90, 184
no spray directly – cockpit windows, 90
no spray directly – electrical components, 90
no spray directly – engine, 90
no spray directly – engine core, 90
no spray directly – engine inlets, 189
no spray directly – engine probes, 90
no spray directly – exhausts, 184, 189
no spray directly – instrument sensors, 184
no spray directly – pitot heads, 90, 184
no spray directly – pitot probes, 189
no spray directly – pitot-static probes, 189
no spray directly – static ports, 90, 189
no spray directly – static vents, 184
no spray directly – TAT probes, 189
no spray directly – thrust reversers, 90, 184
no spray directly – wheels, 90, 189
no spray directly – windows, 189
no spray directly – wing openings, 90
no spray directly – wire harness, 90
no spray zones, 108
nonconformity – definition, 130
Non-conventional Glycol. See Glycol, Non-conventional, See Glycol, Non-conventional
Non-glycol – definition, 43, 52
Non-glycol – organic salts mixtures with Glycol, 43, 52
Non-glycol – organic salts, mixtures of, 43, 52
Non-glycol – potassium acetate, 43, 52
Non-glycol – potassium formate, 43, 52
Non-glycol – sodium acetate, 43, 52
Non-glycol – sodium formate, 43, 52
non-glycol based Type I – EASA guidance, 177
non-glycol based Type I – endurance time tests required, 68
non-glycol based Type I – FAA guidance, 141
non-glycol based Type I – TC guidance, 161
non-Newtonian fluid. See fluid, non-Newtonian
no-spray area. See spray area, no-
Notice N 8900.374, 141
Notice N 8900.431, 141
nowcasting, 94
nozzle. See also deicing unit – nozzle
nozzle requirements– enclosed cabin, 104
nozzle samples. See fluid sampling, nozzle
nucleation site, 176
nucleation site – definition, 176
OAT, wing temperature lower than, 90
obscuration. See snowfall intensity overestimation due to obscuration
obscuration, snowfall intensity overestimation due to. See snowfall intensity overestimation due to obscuration
observation – definition, 130
occupational health and safety (Canada), 169
Oda, Haruiko, 188
one-step deicing/anti-icing, 90
one-step deicing/anti-icing – definition, 184
operations bulletins – definition, 169
operator program, compliance with, 184
out-of-service procedure, 130
oxidation [of carbon] – definition, 201
pad control – definition, 96
pad control point – definition, 97
pad leadership – definition, 97
paint protectants, 33
paint sealants, 33
PANS-ATM – deicing/anti-icing phraseology, 187
passenger briefing, pre-deicing – TC regulation, 169
passenger facility charges (US), 156
pavement, 209
performance adjustments, aircraft. See aerodynamic effect of fluids – performance adjustments
personal protective equipment, 108, 169
Petrov, E., 25
phraseology, 93
phraseology, deicing/anti-icing, 187
phraseology, use of standard, 93, 150
pilot assessment of precipitation intensity – company (airline) coordination (FAA), 141
pilot assessment of precipitation intensity – company (airline) reporting after the fact (FAA), 141
pilot assessment of precipitation intensity – flightcrew absence during deicing/anti-icing, 141
pilot assessment of precipitation intensity – guidance (FAA), 141
pilot assessment of precipitation intensity – mandatory pretakeoff contamination check (FAA), 141
pilot assessment of precipitation intensity – pilot intensity assessment greater than reported (FAA), 141
pilot assessment of precipitation intensity – pilot intensity assessment grossly different than reported (FAA), 141
pilot assessment of precipitation intensity – pilot intensity assessment less than reported (FAA), 141
pilot assessment of precipitation intensity – pilot request of new weather observation (FAA), 141
pilot assessment of precipitation intensity – snowfall visibility table, 141
pilot assessment of precipitation intensity – training requirement (FAA), 141
pilot-in-command – awareness of aircraft condition, 184
pilot-in-command – awareness of deicing/anti-icing fluid characteristics, 184
pilot-in-command – awareness of other relevant factors, 184
pilot-in-command – awareness of taxi times and conditions, 184
pilot-in-command – responsibility to estimate HOT, 184
pilot-in-command – situational awareness, 179
pink snow – definition, 97
plate, frosticator – definition, 176
plate, standard test – definition, 176
POI – aircraft, turbo-prop high wing – inspection, 141
POI – approval of deicing program (FAA), 141
POI – ATOS and SAS, 141
POI – distribution of HOT, 141
POI – operations during light freezing rain/freezing drizzle, 141
POI – program tracking and reporting, 141
polishing frost – unacceptable method, 169
post deicing check. See post deicing/anti-icing check
post deicing/anti-icing – definition, 108
post deicing/anti-icing check, 90, 141, See post deicing/anti-icing check
post deicing/anti-icing – before aircraft dispatch, 90
post deicing/anti-icing – by qualified personnel, 184
post deicing/anti-icing – by qualified staff, 90
post deicing/anti-icing check – definition, 108
post deicing/anti-icing check – elements of, 90
post deicing/anti-icing check – from points offering visibility of all treated surfaces, 90
post deicing/anti-icing check – incorporated in deicing/anti-icing operation or as separate check, 90
post deicing/anti-icing check – integral part of deicing/anti-icing process, 108
post deicing/anti-icing check – repetition, 90
post deicing/anti-icing check – responsibility to conduct, 90
post deicing/anti-icing check (FAA), 150
post deicing/anti-icing check (FAA) – integral part of deicing/anti-icing process, 150
post deicing/anti-icing check (FAA) – recordkeeping mandatory, 150
Index

post deicing/anti-icing check excludes clear ice check, 90
potassium acetate. See also alkali organic salts, See also alkali organic salts
potassium formate. See also alkali organic salts, See also alkali organic salts
POTW (US), 156
precipitation intensity – definition, 184
precipitation intensity assessment by pilot. See pilot assessment of precipitation intensity
precipitation rate – definition, 169
precipitation rate for HOT tables – definition, 176
precipitation rate, 10 minute average – definition, 176
precipitation rate, 20 minute average – definition, 176
precipitation rate, 40 minute average – definition, 176
precipitation rate, 5 minute average – definition, 176
precipitation rate, lowest usable. See LUPR precipitation rate, peak – definition, 176
pre-deicing process, 90, 108
pre-deicing process – brooms, 90
pre-deicing process – forced air, 90
pre-deicing process – forced air with fluid, 90
pre-deicing process – heat, 90
pre-deicing process – heavy frozen contaminant accumulation, 90
pre-deicing process – hot air, 90
pre-deicing process – hot water, 90
pre-deicing process – infrared, 90
pre-deicing process – negative freezing point buffer hot fluid, 90
pre-deicing-step. See pre-deicing process
preflight check, 184
preflight check – be ground crew, 184
preflight check – by flightcrew, 90, 108, 117, 184
preflight check – by ground crew, 90, 108, 117
preflight check – definition, 108
preflight check – wall-around, 108
preflight check – wall-around, 184
pretakeoff check, 90, 184
pretakeoff check – assessment by flightcrew if HOT is still appropriate, 90
pretakeoff check – definition, 108
pretakeoff check – factor in selection of categories of snow precipitation, 141
pretakeoff check – single engine high wing turboprop, 141
pretakeoff check – wing tip devices, 141
pretakeoff check (EASA), 178, 179
pretakeoff check (FAA) – by flightcrew, 150
pretakeoff check (FAA) – definition, 150
pretakeoff check (FAA) – flightcrew situational awareness, 150
pretakeoff check (FAA) – guidance, 150
pretakeoff check (FAA) – regulation 14 CFR § 121.629(c)(3), 150
pretakeoff check (FAA) – within HOT, 150
pretakeoff check (ICAO), 184
pretakeoff check (ICAO) – at night, 184
pretakeoff check (ICAO) – by flightcrew, 184
pretakeoff check (ICAO) – external check, 184
pretakeoff check (ICAO) – in severe weather conditions, 184
pretakeoff check (ICAO) – internal check, 184
pretakeoff check (ICAO) – person checking has responsibility to initiate deicing/anti-icing, 184
pretakeoff check (ICAO) – person checking must be designated, trained and qualified, 184
pretakeoff contamination check, 90, 108
pretakeoff contamination check – alternative is re-deicing, 90
pretakeoff contamination check – when critical surface conditions cannot be determined by flightcrew, 90
pretakeoff contamination check – when HOT exceeded, 90
pretakeoff contamination check (EASA), 179
pretakeoff contamination check (EASA) – definition, 178
pretakeoff contamination check (FAA) – 5 minutes rule, 141
pretakeoff contamination check (FAA) – definition, 150
pretakeoff contamination check (FAA) – fluid failure recognition training for persons conducting, 142
pretakeoff contamination check (FAA) – fluid failure recognition training for pilots, 142
pretakeoff contamination check (FAA) – for allowance time, not, 142
pretakeoff contamination check (FAA) – for HOT, 142
pretakeoff contamination check (FAA) – guidance, 150
pretakeoff contamination check (FAA) – hard wing aircraft with aft mounted engines, 142
pretakeoff contamination check (FAA) – regulation 14 CFR § 121.629(c)(3)(i), 150
pretakeoff contamination check (FAA) – when HOT exceeded, 142, 150
pretakeoff contamination check (FAA) – wingtip devices, of, 142
pretakeoff contamination check (FAA) – within 5 minutes of takeoff, 150
pretakeoff contamination check (FAA), external – light freezing rain and freezing drizzle, 142
pretakeoff contamination inspection (TC), 169
pretakeoff contamination inspection (TC) – definition, 169
pretakeoff contamination inspection (TC) – from inside, 169
pretakeoff contamination inspection (TC) – from outside, 169
pretakeoff contamination inspection (TC) – ice pellet and small hail, not required in, 161
pretakeoff contamination inspection (TC) – ice pellet and small hail, of no value in, 161
pretakeoff contamination inspection (TC) – not with Type I, 169
pretakeoff contamination inspection (TC) – not with Type II/III/IV with HOT < 20 minutes, 169
pretakeoff contamination inspection (TC) – with approved ground icing program, 169
pretakeoff contamination inspection (TC) – within 5 minutes of takeoff ground roll, 169
pretakeoff inspection (TC) – winglet devices, 161
preventive action, 130
primary deicing vehicle operator – definition, 97
procedures, justification for, 185
product name, 72, See fluid name
program, ground deicing and anti-icing, 90
propeller balance, effect of contamination on, 170
propeller efficiency, effect of contamination on, 170
propylene glycol, 65, See also Glycol, Conventional – propylene glycol; EG v PG, See also Glycol, Conventional – propylene glycol; EG v PG

propylene glycol based Type I – endurance time tests not required, 68

protection time – definition, 176

protective equipment, personal, 108

proximity sensor – definition, 90

proximity sensor activation – communications with flightcrew, 90

proximity sensor activation – reporting procedure, 91

proximity sensor activation, deicing unit, 91

pseudoplastic – definition, 108

pump. See deicing unit – fluid pump

qualified personnel – definition, 130

quality – management responsibilities, 131

quality – management responsibilities – continuous improvement, 130

quality – management responsibilities – documentation requirements, 130

quality – management responsibilities – management commitments, 130

quality – management responsibilities – management representative, 130

quality – management responsibilities – management review, 130

quality – management responsibilities – planning objectives, 131

quality – management responsibilities – responsibility and authority, 131

quality – management responsibilities – review input, 131

quality – management responsibilities – review output, 131

quality – management responsibilities – training, head of, 131

quality – service provider responsibilities – aircraft requirement after deicing, 131

quality – service provider responsibilities – approved locations for deicing, 131

quality – service provider responsibilities – awareness, 131

quality – service provider responsibilities – calibration, 131

quality – service provider responsibilities – clean aircraft concept, 131

quality – service provider responsibilities – communication systems, 131

quality – service provider responsibilities – communications with flightcrews, 131

quality – service provider responsibilities – competence of personnel, 131

quality – service provider responsibilities – contamination check, 131

quality – service provider responsibilities – continuous improvement, 131

quality – service provider responsibilities – deicing facilities documentation, 131

quality – service provider responsibilities – deicing infrastructure, 131

quality – service provider responsibilities – deicing procedures, 131

quality – service provider responsibilities – deicing unit, 131

quality – service provider responsibilities – deicing unit boom inspections, 131

quality – service provider responsibilities – education records, 131

quality – service provider responsibilities – engines-on training, 131

quality – service provider responsibilities – equipment walks around checks, 131

quality – service provider responsibilities – experience records, 131

quality – service provider responsibilities – fall protection systems, 131

quality – service provider responsibilities – fire extinguishers, 131

quality – service provider responsibilities – fire suppression systems, 131

quality – service provider responsibilities – fluid acceptance checks, 131

quality – service provider responsibilities – fluid certificates of conformance with delivery, 131

quality – service provider responsibilities – fluid field testing, 131

quality – service provider responsibilities – fluid handling systems, 131

quality – service provider responsibilities – fluid manufacturer recommendations, abide by, 131

quality – service provider responsibilities – fluid quality control checks, 131

quality – service provider responsibilities – fluid sampling procedures, 131

quality – service provider responsibilities – fluid storage, 131

quality – service provider responsibilities – fluid testing equipment, 131

quality – service provider responsibilities – fluid testing, laboratory, 131

quality – service provider responsibilities – fluids, 131

quality – service provider responsibilities – hazard labeling, 131

quality – service provider responsibilities – information systems, 131

quality – service provider responsibilities – inspection records, 131

quality – service provider responsibilities – lockout procedures, 131

quality – service provider responsibilities – maintenance records, 131

quality – service provider responsibilities – out-of-service procedures, 131

quality – service provider responsibilities – personal protective equipment, 131

quality – service provider responsibilities – planning deicing operations, 131

quality – service provider responsibilities – post deicing anti-icing check, 131

quality – service provider responsibilities – qualification records, 131

quality – service provider responsibilities – qualified personnel, 131

quality – service provider responsibilities – tag-out procedures, 131

quality – service provider responsibilities – trainer certification, 132
Index

quality – service provider responsibilities – training effectiveness, 132
quality – service provider responsibilities – training examinations, 132
quality – service provider responsibilities – training programs, 132
quality – service provider responsibilities – training qualification requirements, 132
quality – service provider responsibilities – training records, 132
quality – service provider responsibilities – training, initial, 132
quality – service provider responsibilities – training, recurrent, 132
quality – service provider responsibilities – transport systems, 132
quality – service provider responsibilities – work instructions, 132
quality assurance, 91
quality assurance – audit, 91
quality assurance – definition, 132
quality assurance – includes audits of airline subcontractors, 185
quality assurance – includes audits of deicing/anti-icing procedures, 185
quality assurance program – auditing, 185
quality assurance program – deicing/anti-icing fluids quality control, 185
quality assurance program – documentation, 185
quality assurance program – equipment maintenance, 185
quality assurance program – methods, 185
quality assurance program – training, 185
quality assurance program – training records, 185
quality assurance subset of quality program, 91
quality control, 132
quality control – definition, 132
quality control program, 91
quality control subset of quality program, 91
quality improvement – definition, 132
quality management, 132
quality management – definition, 132
quality management – system approach, 132
quality management system, 132
quality management system – aircraft size limits, 132
quality management system – communications, 132
quality management system – conformance to AS6285, 132
quality management system – conformance to AS6286, 132
quality management system – conformance to regulations, 132
quality management system – control of documents, 132
quality management system – definition, 132
quality management system – deicing location procedures, 132
quality management system – document control, 132
quality management system – documentation requirements, 132
quality management system – emergency procedures, 132
quality management system – engines-on procedures, 132
quality management system – ground icing program, 132
quality management system – procedures, 132
quality management system – process control documents, 132
quality management system – quality manual, 132
quality management system – quality objectives, 132
quality management system – quality policy, 132
quality management system – records, 132
quality management system – safety zones, 132
quality management system – SMS, 132
quality management system – winter operation documents, 132
quality management system – winter planning documents, 132
quality manual – definition, 132
quality manual – ground icing program, comprised in, 132
quality objectives, 132
quality policy, 132
Quality Program Guidelines for Deicing/Anti-Icing of Aircraft on the Ground, 112
quality program superset of quality assurance and quality control, 91
quality system accountable executive, 132
quality system accountable person, 132
quality system program manager, 132
quality system responsible person – definition, 132
rain – definition, 109, 185
rain and snow – definition, 124
rain on cold soaked wing – clear ice, difficulty to detect, 170
rain on cold soaked wing – definition, 109, 124
ramp, high speed. See aerodynamic acceptance test – high speed ramp
ramp, low speed. See aerodynamic acceptance test – low speed ramp
Raytheon Premier 1 dimensions, 128
RDF. See RDF, liquid
RDP. See RDP, liquid
RDP – aluminum corrosion, 209
RDP – cadmium corrosion, 209
RDP – cadmium plate cyclic corrosion test, 195
RDP – carbon brake oxidation test method, 202
RDP – catalysis of carbon brakes, 202
RDP – catalytic oxidation of carbon brakes, 201, 206, 207, 209
RDP – effect on carbon brakes, 201, 203
RDP – electrical wire bundle degradation, 209
RDP – electrical wire bundle degradation, Kapton® insulated, 209
RDP – market introduction history, 201
RDP – oxidation of carbon brakes, 202, 206, 207, 208, 209, 212
RDP – SNOWTAM display, 208
RDP – undesirable corrosion criterion, 195
RDP comparative melting capability, 196
RDP ice melting capability, comparative, 196
RDP ice melting relative capacity, 196
RDP ice melting test, 196
RDP ice melting test ice preparation, 196
RDP ice melting test procedure, 196
RDP ice melting test reference control solution, 196
RDP ice melting test report, 196
RDP ice melting test sample preparation, 196
RDP ice melting test significance, 196
RDP ice melting test temperatures, 196
RDP ice melting v temperature, 196
RDP ice melting v time, 196
Guide to Aircraft Ground Deicing – Issue 6

RDP ice penetration test, 197
RDP ice penetration test description, 197
RDP ice penetration test ice preparation, 197
RDP ice penetration test procedure, 197
RDP ice penetration test reference control solution, 197
RDP ice penetration test reference control solution – potassium acetate 25%, 197
RDP ice penetration test reference control solution – potassium acetate 50%, 197
RDP ice penetration test significance, 197
RDP ice penetration test significance – reporting, 197
RDP ice penetration test temperature, 197
RDP ice penetration test time, 197
RDP ice undercutting test, 196, 197
RDP ice undercutting test description, 196
RDP ice undercutting test dye, 196
RDP ice undercutting test dye – fluorescein, 196
RDP ice undercutting test dye – rhodamine, 196
RDP ice undercutting test equipment, 196
RDP ice undercutting test ice cavity preparation, 196
RDP ice undercutting test ice preparation, 196
RDP ice undercutting test procedure, 196
RDP ice undercutting test reference control solution, 196
RDP ice undercutting test report, 196
RDP ice undercutting test sample preparation, 196
RDP ice undercutting test significance, 196
RDP ice undercutting test temperature, 197
RDP nomenclature, 191
RDP reporting recommendation, 208
RDP use on taxiways, 196
RDP, fluid. See RDP, liquid
RDP, liquid – acceptance tests, 193
RDP, liquid – AIR6130 reporting, 193
RDP, liquid – airfield use label, 193
RDP, liquid – appearance, 193
RDP, liquid – approval by vendor, 193
RDP, liquid – aquatic toxicity, 193
RDP, liquid – asphalt concrete degradation resistance, 193
RDP, liquid – biodegradation, 193
RDP, liquid – BOD, 193
RDP, liquid – bulk shipments, 193
RDP, liquid – composition, 193
RDP, liquid – delivery, 193
RDP, liquid – drum shipments, 193
RDP, liquid – effect on aircraft materials, 193
RDP, liquid – effect on carbon brake systems, 193
RDP, liquid – effect on painted surfaces, 193
RDP, liquid – effect on runway pavement, 193
RDP, liquid – effect on transparent plastics, 193
RDP, liquid – effect on unpainted surface, 193
RDP, liquid – Federal (US) Supply Classification 6850, 193
RDP, liquid – flash point, 193
RDP, liquid – freezing point, 193
RDP, liquid – friction evaluation, 193
RDP, liquid – hydrogen embrittlement, 193
RDP, liquid – ice melting, 194
RDP, liquid – ice melting test. See RDP ice melting test
RDP, liquid – ice penetration, 194
RDP, liquid – ice penetration test. See RDP ice penetration test
RDP, liquid – ice undercutting, 194
RDP, liquid – independent laboratory testing, 194
RDP, liquid – inspection, 194
RDP, liquid – labels, 194
RDP, liquid – licensees, 194
RDP, liquid – lot – definition, 194
RDP, liquid – lot number, 194
RDP, liquid – low-embrittling cadmium plate, 194
RDP, liquid – packaging, 194
RDP, liquid – periodic tests, 194
RDP, liquid – pH, 194
RDP, liquid – physical properties, 194
RDP, liquid – preproduction tests, 194
RDP, liquid – rejection, 194
RDP, liquid – reports, 194
RDP, liquid – resampling, 194
RDP, liquid – rinsibility, 194
RDP, liquid – runway concrete surface scaling resistance, 194
RDP, liquid – safety data sheet, 194
RDP, liquid – sampling, 194
RDP, liquid – sandwich corrosion, 194
RDP, liquid – specific gravity, 194
RDP, liquid – storage stability, 194
RDP, liquid – stress corrosion resistance, 194
RDP, liquid – subcontractors, 194
RDP, liquid – test for Europe, 194
RDP, liquid – TOD, 194
RDP, liquid – total immersion corrosion, 194
RDP, liquid – trace contaminants, 194
RDP, solid – acceptance tests, 191
RDP, solid – AIR6130 reporting, 191
RDP, solid – airfield use label, 191
RDP, solid – approval by purchaser, 191
RDP, solid – aquatic toxicity, 191
RDP, solid – asphalt concrete degradation resistance, 191
RDP, solid – biodegradation, 191
RDP, solid – BOD, 191
RDP, solid – chloride content, 191
RDP, solid – composition, 191
RDP, solid – ecological behavior, 192
RDP, solid – effect on aircraft materials, 192
RDP, solid – effect on painted surfaces, 192
RDP, solid – effect on transparent plastics, 192
RDP, solid – Federal (US) Supply Classification 6850, 192
RDP, solid – flash point, 192
RDP, solid – friction evaluation, 192
RDP, solid – hydrogen embrittlement, 192
RDP, solid – ice melting, 192
RDP, solid – ice melting test. See RDP ice melting test
RDP, solid – ice penetration, 192
RDP, solid – ice penetration test. See RDP ice penetration test
RDP, solid – ice undercutting, 192
RDP, solid – independent laboratory testing, 192
RDP, solid – labels, 192
RDP, solid – lot – definition, 192
Index

RDP, solid – lot number, 192
RDP, solid – low embrittling cadmium plate, 192
RDP, solid – periodic tests, 192
RDP, solid – pH, 192
RDP, solid – physical properties, 192
RDP, solid – preproduction tests, 192
RDP, solid – rejection, 192
RDP, solid – reports, 192
RDP, solid – resampling, 192
RDP, solid – runway concrete surface scaling resistance, 192
RDP, solid – safety data sheet, 192
RDP, solid – sampling, 192
RDP, solid – sampling plan, 192
RDP, solid – sandwich corrosion, 192
RDP, solid – storage stability, 192
RDP, solid – stress corrosion resistance, 192
RDP, solid – TOD, 192
RDP, solid – total immersion corrosion, 192
RDP, solid – total water content, 192
RDP, solid – trace contaminants, 192
RDP, spent ADF as, 156
receding contact angle. See contact angle, receding
record keeping (EASA) – deicing/anti-icing incidents, 179
record keeping (TC), 170
record keeping (TC) – audit dates, results and actions, 170
record keeping (TC) – equipment log sheets, 170
record keeping (TC) – field test results, 170
record keeping (TC) – fluid acceptance records, 170
record keeping (TC) – fluid application records, 170
record keeping (TC) – glycol mitigation plan, 170
record keeping (TC) – minimum records, 170
record keeping (TC) – refractometer calibration, 170
record keeping (TC) – retention time, 170
record keeping (TC) – test frequency, 170
record keeping (TC) – training records, 170
recycled glycol. See Type I – recycled glycol
refractive index – definition, 91
refractometer – definition, 91
refractometer – dual scale caution, 109, 120
refractometer calibration, 170
refractometer temperature compensation, 138, 168
refractometer, use of, 109
refractometers, 170
refueling, effect of. See fueling, effect of
regression analysis (TC) – definition, 173
regression analysis method – icing intensity, 68, 76
regression analysis method for icing intensity measurement, Type I, 68
regression analysis method for icing intensity measurements, Type II/III/IV, 76
regression analysis, endurance time – definition, 152
regression coefficient tables, interpretation of, 148, 163
regression coefficients – best fit power law, 148, 163
regression equation, use of endurance time – for LWES, 152
regulations, 25
regulations, Canada – guidance (TC), 170
regulations, history of early, 185
regulations, justification for, 185
regulations, US, 142
regulations, US – guidance (FAA), 142
regulator – responsibility for regulations and guidance material, 91
regulator – responsibility for airline deicing program compliant with clean aircraft concept, 185
regulator – responsibility for airline to have a deicing program, 91, 185
regulator – responsibility for airport sequence reports, 185
regulator – responsibility for ATC winter operations plan, 185
regulator – responsibility for policies and standards supporting the clean aircraft concept, 91
regulator – responsibility for regulations and guidance material on clean aircraft concept, 91
regulator – responsibility for runway and apron condition reports, 185
regulator – responsibility for weather data, 185
regulatory authority – responsibilities, 91
remote aircraft deicing facility. See CDF; DDF
remote deicing facility. See also DDF
remote deicing facility – definition, 97, 99
remote deicing facility subset of DDF, 97
remote deicing facility subset of deicing facility, 99
remote on-ground ice detection systems. See ROGIDS
removal of frozen contamination with forced air, 103
removal of ice – forced air, 104
removal of snow – forced air v fluid comparison, 104
representative surface, 142, 150
representative surface – approval (TC), 170
representative surface – definition, 170
representative surface – fluid failure, indication of first, 142
representative surface – inclusion of wing leading edge, 142
representative surface – purpose, 170
representative surface – use of (TC), 170
representative surface – visibility from within the aircraft, 142
resampling and retesting – Type I, 55
residual fluid – on trailing edge in flight, 142
residue. See Type II/III/IV residue
residue/gel – definition, 91
residue, 124, 185
rime – definition, 109, 185
rime ice – definition, 91
ROGIDS, 79, 185
ROGIDS – definition, 78, 178
ROGIDS – enclosed cabin, optional equipment for, 104
ROGIDS – false negative – definition, 79
ROGIDS – false positive – definition, 79
ROGIDS – guidance (TC), 161
ROGIDS – monitored surface – definition, 79
ROGIDS alternative to tactile post deicing/anti-icing check, 78
ROGIDS alternative to visual post deicing/anti-icing check, 78
ROGIDS approval by regulator, 78
ROGIDS approval for post deicing/anti-icing check, 78
ROGIDS approval for pre-deicing checks, 78
ROGIDS clear ice detection v tactile check, 79
ROGIDS design requirement, 79
ROGIDS design requirement, 79
ROGIDS design requirement, 79
ROGIDS design requirement, 79
SAAB. See also aerodynamic effect of fluids – evaluation by SAAB
SAAB 2000 dimensions, 128
SAAB 340 dimensions, 128
SAAB 340/2000 spray area diagram, 109, 128
SAE A-5A, Wheels, Brakes and Skid Control Committee, 3
SAE Aerospace Council, role of, 185
SAE AMS1424 Type I. See Type I
SAE AMS1428 Type II. See Type II
SAE AMS1428 Type III. See Type III
SAE AMS1428 Type IV. See Type IV
SAE documents, categories of, 27
SAE G-12 ADF mid-year meeting timeline, 64, 73
SAE G-12 ADF, role of, 64, 73
SAE G-12 Aircraft Ground Deicing Committee, 3
SAE G-12 Aircraft Ground Deicing Committee, role of, 185
SAE G-12 annual meeting timeline, 64, 73
SAE G-12 Committees, list of, 26
SAE G-12 HOT co-chairs, 64, 73
SAE G-12 HOT mid-year meeting timeline, 64, 73
SAE G-12 HOT, role of, 64, 68, 73, 185
SAE G-12 meetings, 26
SAE G-12 Methods, role of, 185
safety – accident investigation, 170
safety – aircraft movement, 170
safety – aircraft positioning, 170
safety – deicing unit movement, 170
safety – employee, role of (Canada), 170
safety – employer, role of (Canada), 170
safety – engine inlet, 170
safety – first aid, 170
safety – hazardous substances, 170
safety – jet blast, 170
safety – job analysis, 170
safety – personal protective equipment, 170
safety – personnel, 170
safety – procedures, 170
safety – safety zones, 170
safety – slipperiness, 170
safety – visibility, 170
safety – weather, 170
safety – wind, 170
safety – workplace inspections, 171
safety data sheet requirements (Canada), 171
safety management system. See SMS
sample bottle label – concentration, 91
sample bottle label – date sample taken, 91
sample bottle label – hazard category, 91
sample bottle label – name of firm sending the sample, 91
sample bottle label – name of vessel, 91
sample bottle label – origin, 91
sample bottle label – product name, 91
sample bottle label – where the sample was taken from, 91
sampling frequency, 91
sampling, nozzle. See fluid sampling, nozzle
sand, 209
sand – aircraft engine, detrimental to, 205
sand – boxed dry, 205
sand – chlorides as contaminant, 205
sand – containers, 205
sand – effect on aircraft engines, 205
Index

sand – free form corrosive agent, 205
sand – free from clay, 205
sand – free from debris, 205
sand – free from organic matter, 205
sand – gradation, 205
sand – impurities, 205
sand – periodic tests, 205
sand – preproduction tests, 205
sand – quality assurance, 205
sand – rejection, 205
sand – report, 205
sand – sampling, 205
sand – specification, 205
sand – use on ramp, 205
sand – use on runway, 205
sand – use on taxiway, 205
sand – washed, 205
saturation – definition, 124
Scientific Material International (SMI), 145, 161
scimitar. See wingtip devices
scimitar, split. See wingtip devices
Scotch, 143
scrapers. See frozen contamination, removal of – with scrapers
service provider, 99
service provider – definition, 132, 171
service provider – responsibilities, 91
service provider, deicing/anti-icing. See service provider
shall (SAE) – definition, 91
sharklets. See wingtip devices
shear force – definition, 109, 185
shear thinning. See Type II/III/IV – shear thinning
Sheehan, Terry, 188
Short 360 spray area diagram, 109
Shorts 330 dimensions, 128
Shorts 360 dimensions, 128
Shorts 360 spray area diagram, 129
should (SAE) – definition, 91
SHRP H-332, 196, 197
simulator, deicing. See training, computer based deicing simulator
Sino Swearinger SJ30-2 dimensions, 129
slats. See flaps and slats
sliding angle – definition, 33
slipperiness, 91
slot management – definition, 97
slush – definition, 91, 109, 124, 171, 176
slush, formation of, 176
slush, mat of, 176
smoke. See snowfall intensity overestimation due to obscuration
SMS – definition, 132
SMS (TC), 171
snow. See also HOT precipitation categories; HOT precipitation rate
snow – definition, 91, 109, 124, 176, 185
snow – guidance (TC), 171
Snow and Ice Control Plan, FAA-approved, 156
snow desk, 156
snow desk – definition, 97
snow gauge, 94
snow gauge – GEONOR, 94
snow gauge – hotplate, 94
snow gauge – precipitation, 94
snow grains – definition, 91, 124, 171
snow grains subset of snow, 91
snow occurrence, 142
snow pellets – definition, 91, 124, 171
snow pellets on cold dry aircraft. See also dry snow
snow removal, 99
snow removal – DDF, 97
snow removal, manual – training, 109
snow tests, 74
snow, blowing, 109, 117
snow, blowing – effect on aerodynamically quiet areas, 171
snow, cold dry. See dry snow
snow, dry. See dry snow
snow, dry – definition, 185
snow, foam confused as, 117
snow, heavy – engine power run-ups, 142
snow, heavy – precipitation rate greater than 2.5 mm/h, 142
snow, heavy – takeoff in (FAA), 142
snow, light. See also HOT precipitation rate
snow, moderate. See also HOT precipitation rate
snow, pink – definition, 97
snow, removal of, 91
snow, very light. See also HOT precipitation rate
snow, wet – definition, 185
snowfall intensity. See also HOT precipitation rate
snowfall intensity – heavy, 147
snowfall intensity – light, 147
snowfall intensity – moderate, 147
snowfall intensity – very light, 147
snowfall intensity as a function of prevailing visibility table. See snowfall visibility table
snowfall intensity overestimation due to obscuration, 142
snowfall intensity overestimation due to obscuration – dust, 161
snowfall intensity overestimation due to obscuration – fog, 142, 147, 161
snowfall intensity overestimation due to obscuration – freezing fog, 161
snowfall intensity overestimation due to obscuration – haze, 142, 147, 161
snowfall intensity overestimation due to obscuration – mist, 161
snowfall intensity overestimation due to obscuration – smoke, 147, 161
snowfall intensity v snowfall rate. See footnote 94
snowfall intensity visibility table. See snowfall visibility table
snowfall intensity, ASOS reported, 147
snowfall intensity, METAR – underestimation in heavily rimed snow, 94
snowfall intensity, METAR – underestimation in snow containing single crystals of compact shape, 94
snowfall intensity, METAR – underestimation in wet snow, 94
snowfall intensity, weather observer reported, 147
snowfall rate – liquid water equivalent, 94
snowfall visibility table – guidance (FAA), 142
snowfall visibility table – guidance (TC), 161
snowfall visibility table – use of prevailing visibility, 142
snowfall visibility table (FAA), 147
snowfall visibility table (TC), 161
snowflake, formation of, 91
snowmaker, 74
SNOWTAM – EG, 208
SNOWTAM – GAC, 208
SNOWTAM – KAC, 208
SNOWTAM – KFOR, 208
SNOWTAM – NAAC, 208
SNOWTAM – NAFO, 208
SNOWTAM – PG, 208
SNOWTAM – SAND, 208
SNOWTAM – UREA, 208
SNOWTAM reporting – RDP, 208
Society of Automotive Engineers. See SAE
sodium acetate. See also alkali organic salts, See also alkali organic salts
sodium formate. See also alkali organic salts, See also alkali organic salts
solid runway and taxiway deicing/anti-icing compound. See RDP, solid, 192
specification, category, 48, 57, 58
specification, foundation, 43, 48, 57, 58
specimen sheet (training) – definition, 171
spray areas, no-, 129
spray pattern, 171
spray pressure, 171
spray test, – report, 73
spray test, field, 64, 73
spray test, field – beading, evaluation of, 64
spray test, field – color bleed-through, evaluation of, 73
spray test, field – color intensity, evaluation of, 64, 73
spray test, field – fisheyes, presence of, 64
spray test, field – flow, evaluation of, 64, 73
spray test, field – foam, tendency to, 64, 73
spray test, field – protocol, 64, 73
spray test, field – reason for, 64, 73
spray test, field – report, 64
spray test, field – residues, presence of, 64, 73
spray test, field – tendency to foam, evaluation of, 64, 73
spray test, field – viscosity of nozzle samples, 73
spray test, field – viscosity of pre-nozzle samples, 73
spray test, field – wetting, evaluation of, 64
spray trial, field. See spray test, field
staff, qualified – definition, 91
staging areas – definition, 97
staging bay – definition, 171
Standardized International Aircraft Ground Deicing Program. See SIAGDP
state, Cassie, 33
state, Cassie – definition, 33
state, Cassie to Wenzel, 33
state, non-wetting, 33
state, Wenzel, 33
state, Wenzel – definition, 33
state, wetting, 33
Stony Brook apparatus for viscosity field check, 59
storage – annual inspection, 91
storage – contamination check, 91
storage – corrosion at liquid vapor interface, 91
storage – corrosion check, 91
storage – corrosion in vapor space, 91
storage – dedicated, 91
storage – degradation check, 91
storage – degradation check – frequency, 91
storage – dissimilar metals, 91
storage – effect of prolonged heating, 92
storage – galvanic couple, 92
storage – label, 92
storage – labeling, 92
storage – prolonged heating, 92
storage – sampling frequency, 92
storage – temperature, 92
storage – viscosity test, 92
storage – water loss, 92
storage system, 185
storage tank – definition, 92
storage tank corrosion, 171
storage tank inspection, 171
strakes. See wingtip devices
Strategic Highway Research Program. See SHRP
sublimation – definition, 124
sublimation (vapor phase to solid phase), 33
sublimation, frost formation by, 92
supercooled fluid. See crystallization, delayed
supercooled large droplets superset of freezing drizzle, 152
supercooled large droplets superset of freezing rain, 152
super-hydrophobic surface – definition, 33
surface area, aircraft, 129
surface area, horizontal stabilizer, 129
surface area, one third fuselage, 129
surface area, wing, 129
surface, clean – description of, 37
surface, hydrophilic. See hydrophilic surface
surface, hydrophobic. See hydrophobic surface
surface, icephobic. See icephobic surface
surface, super-hydrophobic. See super-hydrophobic surface
surface, treated – definition, 33
surface, untreated – definition, 33
Suter, E.T. (Tom), 188
system – definition, 78, 79
tactile inspection. See check, tactile
tactile pole, 171
tactile wand, 171
TAF, 124
tag-out procedure, 133
takeoff clearance v HOT, 156
takeoff, no – freezing rain, heavy – guidance (FAA), 142
takeoff, no – freezing rain, moderate – guidance (FAA), 142
takeoff, no – hail – guidance (FAA), 142
takeoff, no – ice pellets, heavy – guidance (FAA), 143
taxi routes, 99
taxiing time v HOT, 156
taxiing time, acceptable, 156
taxiing time, slower in winter-contaminated conditions, 156
taxiway – definition, 171
taxiway deicing compound. See RDP
taxiway deicing product. See RDP
taxiways, 210
telescopic boom, fixed, 156
temperature at nozzle, 92
Index

terminal aerodrome forecast. See TAF
terminal deicing facility – definition, 171
terminal deicing facility subset of deicing facility, 99
testing laboratories – Anti-icing Materials International Laboratory (AMIL), 161
testing laboratories – APS Aviation, 161
testing laboratories – Scientific Material International (SMI), 161
thermal conductivity, 33
thickeners, 49
three minute rule, 147, 161, 179
total oxygen demand. See TOD
TP 10452E, changes to, 161
TP 14052E, 157, 163
trailing edge, residual frozen fluid on, 143
trainer qualification, 109
training, 92, 105
training – accident prevention, 185
training – accident/incident reporting, 124
training – aerodynamics, 117
training – aerodynamics – aerodynamic forces, 117
training – aerodynamics – angle of attack, 117
training – aerodynamics – contamination, effect of, 117
training – aerodynamics – critical surfaces, 117
training – aerodynamics – failed fluids, effect of, 117
training – aerodynamics – flaps and slats, 117
training – aerodynamics – fluids, effects of, 117
training – aerodynamics – frost, effect of, 117
training – aerodynamics – fundamentals, 117
training – aerodynamics – fuselage, 117
training – aerodynamics – laminar and turbulent flow, 117
training – aerodynamics – stall, 117
training – aerodynamics acceptance test, 120
training – air conditioning, 109
training – aircraft manufacturer recommendations, 114
training – aircraft movement hazard, 124
training – airframe manufacturer requirements, 109
training – all clear signal, 109, 117
training – anti-icing code, 109, 117, 185
training – approval, 109
training – APU blast hazard, 124
training – APU bleed air, 109
training – by trained and qualified personnel, 109
training – CBT, 114
training – certificate, 114
training – certificate of analysis, 120
training – checks, 185
training – clean aircraft concept, 109, 114, 117, 133
training – clear ice, 109, 117, 124
training – cockpit windows, 110, 118
training – communication procedures, 185
training – communications, 109, 124
training – communications with flightcrew, 109, 117
training – communications with flightcrew – English language, 109, 117
training – computer based, 109
training – computer based – minimum requirements, 109
training – computer based – oversight, 109
training – computer based deicing simulators, 114
training – computer based simulator, 109
training – computer based simulator – oversight, 109
training – computer based training, 114
training – computer based training simulator, 114
training – contamination recognition, 109, 185
training – critical surface, 185
training – critical surface – air conditioning inlets/outlets, 109, 117
training – critical surface – airstream direction detector probes, 109, 117
training – critical surface – angle of attack sensors, 109, 117
training – critical surface – engine fan blades, 117
training – critical surface – engine inlets, 109, 117
training – critical surface – flaps, 117
training – critical surface – fuel tank vents, 109, 117
training – critical surface – fuselage, 109, 117
training – critical surface – landing gear, 109, 117
training – critical surface – landing gear doors, 109, 117
training – critical surface – pitot heads, 109, 117
training – critical surface – static ports, 109, 117
training – critical surface – wing, tail and control surfaces, 109, 117
training – critical surface inspection, 109, 117
training – deicing anti-icing fluid handling, 185
training – deicing anti-icing fluid storage, 185
training – deicing facilities, 109
training – deicing log, 109, 117
training – deicing procedures, 109
training – deicing report, 109
training – deicing technology, alternate, 109
training – deicing unit, 110, 185
training – deicing unit – boom operation from lower control station, 119
training – deicing unit – braking test, 119
training – deicing unit – closed cabin layout, 119
training – deicing unit – communication system, 119
training – deicing unit – communications between driver and sprayer, 119
training – deicing unit – communications monitoring, 119
training – deicing unit – deicing data collection, 119
training – deicing unit – emergency hydraulic pump, 119
training – deicing unit – emergency lowering of boom, 119
training – deicing unit – emergency shut off, 119
training – deicing unit – emergency stop, 119
training – deicing unit – emergency stop switch, 119
training – deicing unit – filling of, 119
training – deicing unit – filling station, 119
training – deicing unit – fire suppression systems, 119
training – deicing unit – fluid concentration monitoring, 119
training – deicing unit – fluid flow rate, 119
training – deicing unit – fluid overfilling prevention system, 119
training – deicing unit – fluid pressure monitoring, 119
training – deicing unit – fluid temperature monitoring, 119
training – deicing unit – labelling, 119
training – deicing unit – load capacity of basket/cabin, 119
training – deicing unit – maximum speed with boom raised 6 km/h, 119
training – deicing unit – maximum velocity of boom, 119
training – deicing unit – maximum wind with boom elevated, 119
training – deicing unit – nozzle, use of, 119
training – deicing unit – open basket layout, 119
training – deicing unit – underwing spraying, 119
training – deicing unit – walk-around pre-operation check –
 basket/cabin, 119
training – deicing unit – walk-around pre-operation check –
 boom, 119
training – deicing unit – walk-around pre-operation check –
 emergency and safety equipment, 119
training – deicing unit – walk-around pre-operation check –
 engine, 119
training – deicing unit – walk-around pre-operation check –
 fuel, 119
training – deicing unit – walk-around pre-operation check –
 nozzle, 119
training – deicing unit – walk-around pre-operation check –
 windshield washer fluid, 119
training – deicing unit auxiliary engine – asphyxiation
 hazard in poorly ventilated areas, 119
training – deicing unit combustion heaters – asphyxiation
 hazard in poorly ventilated areas, 119
training – deicing unit engine – asphyxiation hazard in
 poorly ventilated areas, 119
training – deicing unit procedure, 109
training – deicing unit, new – cleaning of, 120
training – deicing/anti-icing decision – after flightcrew is
 on board, 110, 117
training – deicing/anti-icing decision – contamination
 check by flightcrew, 117
training – deicing/anti-icing decision – contamination
 check by ground crew, 117
training – deicing/anti-icing decision – flightcrew check,
 110
training – deicing/anti-icing decision – overnight aircraft
 prior to flightcrew arrival, 110, 117
training – deicing/anti-icing decision – preflight check by
 flightcrew, 110
training – deicing/anti-icing decision – preflight check by
 ground crew, 110
training – deicing/anti-icing fluids, 114, 185
training – deicing/anti-icing initiation conditions, 114
training – deicing/anti-icing initiation conditions – clear
 ice, 114
training – deicing/anti-icing initiation conditions – freezing
 fog, 114
training – deicing/anti-icing initiation conditions – freezing
 rain, 114
training – deicing/anti-icing initiation conditions – high
 humidity on cold soaked wing, 114
training – deicing/anti-icing initiation conditions – ice
 accretion in-flight, 114
training – deicing/anti-icing initiation conditions – rain on
 cold soaked wing, 114
training – deicing/anti-icing initiation conditions – snow,
 frost and ice, 114
training – deicing/anti-icing procedures, 185
training – deicing/anti-icing procedures with specific
 aircraft, 185
training – deicing/anti-icing procedures with specific fluids,
 185
training – dispatch, 110
training – dispatch personnel, 114
training – distant learning, 114
training – EASA requirements, 179
training – effec
Index

training – fluid application – temperature, 110
training – fluid application – thrust reversers, 110, 118
training – fluid application – two-step, 118
training – fluid application – wheel bays, 110, 118
training – fluid blending, 110, 120
training – fluid blending – water quality, 120
training – fluid concentration check, 110, 120
training – fluid contamination, 120
training – fluid failure recognition, 110, 124
training – fluid failure recognition for persons conducting pretakeoff contamination checks (FAA), 143
training – fluid failure recognition training for pilots (FAA), 143
training – fluid heat degradation, 121
training – fluid heat hazard, 120, 125
training – fluid heating, 110, 121
training – fluid hoses, 121
training – fluid manufacturer recommendations – fluid handling system, 121
training – fluid manufacturer recommendations – fluid heating, 121
training – fluid manufacturer recommendations – fluid reception, 121
training – fluid manufacturer recommendations – fluid transfer system, 121
training – fluid manufacturer recommendations – particles, 121
training – fluid manufacturer recommendations – samples, 121
training – fluid manufacturer recommendations – sampling, 121
training – fluid manufacturer recommendations – storage container materials, 121
training – fluid manufacturer recommendations – storage temperature limits, 121
training – fluid manufacturer recommendations – test frequency, 121
training – fluid pressurization hazard, 120, 125
training – fluid recovery, 118
training – fluid residues, 110
training – fluid sampling, 110
training – fluid selection, 110
training – fluid shear degradation, 121
training – fluid storage, 121
training – fluid storage – fluid manufacturer recommendations, 121
training – fluid storage – labelling, 121
training – fluid storage – regulatory requirements, 121
training – fluid storage – tank level, 121
training – fluid storage – temperature, maximum, 121
training – fluid storage – temperature, minimum, 121
training – fluid storage – totes, 121
training – fluid storage – UV light, effect of, 121
training – fluid storage and handling, 110
training – fluid testing, 121
training – fluid testing – appearance, 121
training – fluid testing – field viscosity check, 121
training – fluid testing – fluid manufacturer specification, 121
training – fluid testing – pH, 121
training – fluid testing – refraction, 121
training – fluid testing frequency, 121
training – fluid testing frequency – fluid manufacturer recommendations, 121
training – fluid transfer system – labels, 121
training – fluid transfer system, dedicated, 121
training – fluid transfer systems, 111, 121
training – fluid, reception of, 121
training – foam confused as snow, 118
training – footwear, safety, use of, 111, 120, 125
training – freezing point buffer, 121
training – freezing point depressant, identity of, 111, 118
training – frost prevention, local, 121
training – frost, removal of, 118
galvanic couples, 121
gate departure check, 111, 118
gloves, use of, 111, 120, 125
ground crew, 111, 115
ground crew initial, 111
ground crew recurrent, 111
ground icing conditions, 111
hazards of ice, snow and frost, 111, 115, 185
head of training, 115
health and safety, 111, 125
health effects, 185
hearing protection, use of, 111, 120, 125
HHET, 121
HOT, limitations of, 185
HOT, use of, 111, 118, 121, 185
human error, 125
human factors, 111, 125
ICAO alphabet, 118
ICAO requirements, 185
ice removal, 111
ice, light, removal of, 118
ice, removal of, 118
initial, 133
jet blast hazard, 118, 125
jet suction hazard, 125
labels, use of, 125
landing gear, deicing of, 111, 118
language proficiency rating scale, ICAO, 115
language, English, 115
language, other, 115
lesson learned, 186
lessons learned, 115
local variations, 115
LOUT, 121
LOUT relationship to aircraft type (high speed, low speed), 121
LOUT relationship to OAT, 121
low visibility hazard, 125
management plan, 115
manager responsible, 115
materials compatibility, 121
memory aids, use of, 125
new equipment, 115
new procedures, 186
no spray zones, 111, 118
noise level hazard, 125
personal protective equipment, use of, 120, 125
personal protective equipment, use of, 111
personnel to be trained – dispatch, 111
personnel to be trained – flightcrew, 111
training – refractometer, 121
training – recycling, 118
training – recurrent, 133
training – records – trainer name, 115
training – records – subject matter, 115
training – records – trainer name, 115
training – recurrent, 133
training – recycling, 118
training – refractometer – dual scale caution, 121
training – refractometer, use of, 111, 121
training – representative surfaces, 111, 118
training – respiratory protection, use of, 111, 120, 125
training – safety data sheets, use of, 125
training – safety equipment, use of, 111, 120, 125
training – safety precautions, 186
training – sample bottles, 121
training – sample label, 111, 121
training – sample labelling, 111, 121
training – samples, care of, 111, 121
training – sampling, 122
training – sampling – valve, from, 122
training – sampling – zone sampler, with, 122
Index

Transport Canada/FAA list of fluids. See list of fluids, FAA/Transport Canada
Transportation Safety Board of Canada, 24
Tupolev TU-134 dimensions, 129
Tupolev TU-154M dimensions, 129
Tupolev TU-204 dimensions, 129
two-step deicing/anti-icing, 92
two-step deicing/anti-icing – definition, 186
Type I – acrylic plastics, effect on, 43
Type I – aerodynamic acceptance – 50/50, 44
Type I – aerodynamic acceptance – concentrate form, 44
Type I – aerodynamic acceptance – concentrations to test, 44
Type I – aerodynamic acceptance – fluid thickness, final, 44
Type I – aerodynamic acceptance – fluid thickness, initial, 44
Type I – aerodynamic acceptance – high speed ramp, 44
Type I – aerodynamic acceptance – highest concentration, 44
Type I – aircraft manufacturer maintenance manual, 44
Type I – aircraft manufacturer service letters, 44
Type I – aircraft type and model restrictions, 44
Type I – anti-icing performance – HHET, 45
Type I – anti-icing performance – sample sheared, 45
Type I – anti-icing performance – WSET, 45
Type I – appearance, 44
Type I – application guidelines. See fluid application
Type I – application rate, minimum (1 l/m²), 143
Type I – approval by purchaser, 44
Type I – BOD, 44
Type I – Brix, 44
Type I – cadmium as contaminant, 44
Type I – carbon brake compatibility, 44
Type I – certificate of analysis, 44
Type I – chromate as contaminant, 44
Type I – COD, 44
Type I – color uniformity, 44
Type I – color, orange, 44
Type I – colorless – mitigating procedures, 44
Type I – colorless – risk assessment, 44
Type I – colorless – special training, 44
Type I – commingling, 44
Type I – compatibility with Type II/III/IV, 41, 44, 92, 143
Type I – composition, 44, 186
Type I – composition – fire hazard inhibitor, 44
Type I – composition – thickeners, free of, 44
Type I – consistency, 44
Type I – containers, 44
Type I – contaminants – other fluids, 44
Type I – contaminants, trace, 44
Type I – corrosion – recycled glycol, 44
Type I – corrosion, low embrittling cadmium plate, 44
Type I – corrosion, sandwich, 44
Type I – corrosion, stress-, 45
Type I – crawling, 45
Type I – definition, 143
Type I – drums, 45
Type I – effect on aircraft materials, 45
Type I – environmental information, 45
Type I – exposure, human, 45
Type I – field spray test, 65
Type I – field test with deicing unit, 45
Type I – film breaks, 45
Type I – fire hazard – circuit breakers, 45
Type I – fire hazard – direct current, 45
Type I – fire hazard – glycol, 45
Type I – fire hazard – inhibitor, 45
Type I – fire hazard – noble metal coated wiring, 45
Type I – fire hazard – silver coated wiring, 45
Type I – flash point, 45
Type I – flash point, minimum, 45
Type I – fluid manufacturer to report – all technical requirement results, 45
Type I – fluid manufacturer to report – recycled glycol, presence of, 45
Type I – fluid manufacturer to report – recycled glycol, source of, 45
Type I – foam, tendency to, 45
Type I – forced air – no HOT, 104
Type I – foreign matter, free from, 45
Type I – formatted based, 92
Type I – freezing point buffer, 45
Type I – freezing point curve, 45
Type I – freezing point depressant, non-glycol, 45
Type I – freezing point of 50/50 dilution, 45
Type I – freezing point of concentrate form, 45
Type I – freezing point of ready-to-use form, 45
Type I – functional description, 37, 92, 186
Type I – halogens as contaminant, 45
Type I – hard water stability, 45
Type I – heat contribution to HOT, 143
Type I – heating requirements, 143
Type I – HHET, 45
Type I – HHET – sample sheared, 45
Type I – hydrogen embrittlement, 45
Type I – label, 45
Type I – label – AMS1424/1 or AMS142/2, 45
Type I – label – lot number, 45
Type I – label – manufacturer’s identification, 45
Type I – label – purchase order number, 45
Type I – label – quantity, 45
Type I – lead as contaminant, 45
Type I – lot acceptance tests, 45
Type I – lot number, 45
Type I – lot rejection, 45
Type I – LOUT, 92
Type I – LOUT – definition, 45
Type I – LOUT of dilutions, 45
Type I – LOUT reporting requirement, 45
Type I – LOUT, manufacturer obligation to report, 45
Type I – lumps, free from, 45
Type I – matter, free from foreign, 45
Guide to Aircraft Ground Deicing – Issue 6

Type I – maximum concentration, 92
Type I – mercury as contaminant, 45
Type I – mixing of fluids from different manufacturers, 45
Type I – mold growth, 45
Type I – nitrate as contaminant, 46
Type I – nitrogen as contaminant, total, 46
Type I – painted surface, effect on, 46
Type I – particulate contamination, 46
Type I – performance properties, 46
Type I – pH, 46
Type I – phosphorus as contaminant, 46
Type I – physical properties, 46
Type I – polycarbonate, effect on, 46
Type I – precautions, 46
Type I – qualification results, initial – comparison to subsequent results, 46
Type I – qualification, initial, 46
Type I – qualification, initial – what: all technical requirement, 46
Type I – qualification, initial – when: change in ingredients, 46
Type I – qualification, initial – when: change in processes, 46
Type I – qualification, initial – when: change in processing, 46
Type I – qualification, initial – when: confirmatory testing, 46
Type I – qualification, multiple location, 46
Type I – qualification, multiple location – different from original location, 46
Type I – qualification, multiple location – same as original location, 46
Type I – qualification, multiple location – when: once, 46
Type I – qualification, periodic, 46
Type I – qualification, periodic re- – what: aerodynamic acceptance, 46
Type I – qualification, periodic re- – what: WSET and HHET, 46
Type I – qualification, periodic re- – when: 2 years and 4 years thereafter, 46
Type I – quality assurance, 46
Type I – recycled glycol – obligation to report presence of, 46
Type I – recycled glycol – obligation to report source of, 46
Type I – recycled glycol – quality assurance, 46
Type I – recycled glycol contaminants, 46
Type I – recycled glycol, source of, 46
Type I – refractive index, 46
Type I – rejection by purchaser, 46
Type I – reports by independent facilities, 46
Type I – Right to Know Regulation (US), 46
Type I – runway concrete resistance, 46
Type I – safety data sheet, 46
Type I – same ingredients, 46
Type I – same manufacturing procedures, 47
Type I – same methods of inspection, 47
Type I – sample selection considerations, 65
Type I – sampling, bulk shipments, 47
Type I – sampling, drum shipments, 47
Type I – sampling, statistical, 47
Type I – sampling, tote shipments, 47
Type I – shear, resistance to, 47
Type I – skins, free from, 47
Type I – slipperiness, 47
Type I – specific gravity, 47
Type I – stability, hard water, 47
Type I – stability, storage, 47
Type I – stability, thermal, 47
Type I – storage stability, 47
Type I – sulfur as contaminant, 47
Type I – surface tension, 47
Type I – suspended matter, 47
Type I – temperature at nozzle compliance, 143
Type I – temperature, minimum application, 143
Type I – testing, autonomous facilities, 47
Type I – testing, confirmatory, 47
Type I – testing, independent facilities, 47
Type I – testing, independent laboratories, 47
Type I – thermal stability, 47
Type I – thickeners, free from, 47
Type I – totes, 47
Type I – transparent plastics, effect on, 47
Type I – unpainted surface, effect on, 47
Type I – use of concentrate form, 47
Type I – use of concentrate form, no, 92
Type I – use of dilution, 47
Type I – use on aircraft. See Type I commercialization condition
Type I – water, composition of hard, 47
Type I – water, soft, 47
Type I – wetting, 47
Type I – WSET – 3 minutes minimum, 47
Type I – WSET – sample sheared, 47
Type I – alkali organic salt based fluid – effect on Type II/III/IV – TC Guidance, 161
Type I AMS1424/1, 48
Type I AMS1424/2, 49
Type I commercialization condition – FAA/Transport Canada list of fluids, 65
Type I commercialization condition – field spray test, 65
Type I coverage, 171
Type I decision to commercialize, 65
Type I degradation – chemical contamination, 143
Type I degradation – chemical contamination – corrosion in storage vessel, 171
Type I degradation – chemical contamination – galvanic corrosion in storage vessel, 171
Type I degradation – chemical contamination – leaky tank covers, 171
Type I degradation – chemical contamination – mislabeled equipment, 171
Type I degradation – chemical contamination – unlabeled equipment, 171
Type I degradation – chemical contamination – uncleaned new equipment, 171
Type I degradation – chemical contamination – undedicated equipment, 171
Type I degradation – chemical contamination – unintended transfer, 171
Type I degradation – chemical contamination – unlabeled equipment, 171
Type I degradation – exposure to UV light, 171
Type I degradation – heating – oxidation, 171
Type I degradation – heating – oxidation glycol, 143
Type I degradation – heating – water loss, 171
Type I degradation – heating – water loss/increase in glycol concentration, 143
Type I failure criteria, 68
Type I Glycol (Conventional and Non-conventional) based fluid, 47, 48
Type I Glycol (Conventional and Non-conventional) based fluid – technical requirements, 47
Type I Glycol (Conventional) based fluid, 47, 48
Type I Glycol (Conventional) based fluid – technical requirements, 47
Type I Glycol (Non-conventional) based fluid, 48
Type I Glycol (Non-conventional) based fluid – technical requirements, 47
Type I Glycol based fluid, 47
Type I heating issues – application temperature, 171
Type I heating issues – evaporation, 171
Type I heating issues – shelf life, 171
Type I heating issues – standby heating, 171
Type I heating issues – thermal degradation, 171
Type I heating issues – water loss, 171
Type I manufacturer. See fluid manufacturer
Type I name change upon reformulation, 65
Type I name, experimental, 65
Type I name, final commercial – date due May 01, 65
Type I name, new, 65
Type I Non-glycol based fluid, 47, 49
Type I Non-Glycol based fluid – effect on Type II/III/IV – EASA guidance, 177
Type I Non-glycol based fluid – effect on Type II/III/IV – FAA Guidance, 143
Type I Non-glycol based fluid – effect on Type II/III/IV – TC Guidance, 161
Type I Non-Glycol based fluid – galvanic corrosion of metal parts – EASA guidance, 177
Type I Non-Glycol based fluid – need for inspections – EASA guidance, 177
Type I Non-Glycol based fluid – need for maintenance – EASA guidance, 177
Type I Non-glycol based fluid – technical requirement, additional, 47
Type I Non-glycol based fluid – technical requirements, 47
Type I qualification. See ARP6207
Type I sample selection considerations, 65
Type I wetting test s, 33
Type I wetting v time test, 33
Type I, failure of – leading edge, 143
Type I, failure of – structurally thin areas, 143
Type I, failure of – trailing edge, 143
Type I, failure of – wing tips, 143
Type I, unheated, 171
Type I, unheated – HOT not approved, 143
Type I/II/III/IV – no protection for airborne aircraft, 143
Type I/II/III/IV quality control – appearance: contamination, separation, 143
Type I/II/III/IV quality control – pH, 143
Type I/II/III/IV quality control – refractive index, 143
Type I/II/III/IV, use of – TC criterion – certificate of conformance, 161
Type I/II/III/IV, use of – TC criterion – conformance to AMS424 and AMS428, 161
Type I/II/III/IV, use of – TC criterion – independent laboratory confirmation of conformance, 161
Type I. See also Type II/III/IV; Type II/IV
Type II 50/50 – HHET 0.5 hours minimum, 52
Type II 50/50 – WSET 5 minutes minimum, 52
Type II 75/25 – HHET 2 hours minimum, 52
Type II 75/25 – WSET 20 minutes minimum, 52
Type II color – yellow, 52
Type II neat – HHET 4 hours minimum, 52
Type II neat – WSET 30 minutes minimum, 53
Type II/III/IV – aerodynamic acceptance, 53
Type II/III/IV – aerodynamic acceptance of unshaped sample, 53
Type II/III/IV – aerodynamic acceptance of unshaped sample, 53
Type II/III/IV – aerodynamic performance of highest viscosity dilution sample, 53
Type II/III/IV – aluminum alloy, 53
Type II/III/IV – anti-icing performance, 53
Type II/III/IV – apparent viscosity, 53
Type II/III/IV – appearance, 53
Type II/III/IV – application, 53
Type II/III/IV – application – biodegradability, 53
Type II/III/IV – application – biodegradability, 53
Type II/III/IV – application guideline. See fluid application
Type II/III/IV – application with forced air – foam, 104
Type II/III/IV – application with forced air – thickness, 104
Type II/III/IV – application with forced air – viscosity check required, 104
Type II/III/IV – approval by purchaser, 53
Type II/III/IV – approval, re-, 53
Type II/III/IV – aquatic toxicity, 53
Type II/III/IV – BOD, 53
Type II/III/IV – Brix, 53
Type II/III/IV – Brookfield LV viscometer, 53
Type II/III/IV – carbon brake compatibility, 53
Type II/III/IV – certificate of analysis, 53
Type II/III/IV – change in production method, 53
Type II/III/IV – circuit breakers, defective, 53
Type II/III/IV – classification, 53
Type II/III/IV – COD, 53
Type II/III/IV – cold storage stability, 53
Type II/III/IV – color, 53
Type II/III/IV – colorless, 53
Type II/III/IV – colorless fluid risk assessment, 53
Type II/III/IV – colorless fluid safety issues, 53
Type II/III/IV – commingling, 53
Type II/III/IV – compatibility with brake material, 53
Type II/III/IV – compatibility with Type I, 47, 143
Type II/III/IV – composition, 53, 186
Type II/III/IV – concentration, 143
Type II/III/IV – contaminants, 53
Type II/III/IV – corrosion resistance, stress-, 53
Type II/III/IV – corrosion, total immersion, 53
Type II/III/IV – corrosion, low embrittling cadmium plate, 53
Type II/III/IV – corrosion, sandwich, 53
Type II/III/IV – corrosion, stress-, 53
Type II/III/IV – definition, 143
Type II/III/IV – direct current hazard, 53
Type II/III/IV – dry-out exposure to cold dry air, 53
Type II/III/IV – dry-out exposure to dry air, 53

Index
Type II/III/IV – dry-out, heated leading edge, 53, 189
Type II/III/IV – dry-out, successive. See Type II/III/IV residue; Type II/IV residue
Type II/III/IV – dry-out, successive test. See Type II/III/IV – successive dry-out and rehydration test
Type II/III/IV – effect on acrylic plastics, 53
Type II/III/IV – effect on aircraft materials, 53
Type II/III/IV – effect on painted surfaces, 53
Type II/III/IV – effect on polycarbonate, 53
Type II/III/IV – effect on transparent plastics, 53
Type II/III/IV – effect on unpainted surfaces, 54
Type II/III/IV – electrochemical dehydrolysis, 54
Type II/III/IV – environmental information, 54
Type II/III/IV – exposure to cold dry air, 54
Type II/III/IV – exposure to dry air, 54
Type II/III/IV – exposure, human, 54
Type II/III/IV – FAA/TC list of fluids, 54, See also Type II/III/IV
Type II/III/IV – field spray test, 73
Type II/III/IV – fire hazard, 54
Type II/III/IV – fire hazard inhibitor, 54
Type II/III/IV – flash point, 54
Type II/III/IV – fluid concentration, 143
Type II/III/IV – fluid elimination, 54
Type II/III/IV – fluid residue table, AMIL, 73
Type II/III/IV – fluid transfer system, 92
Type II/III/IV – fluid transfer system – dedicated, 92
Type II/III/IV – fluid transfer system – labeling, 92
Type II/III/IV – foam, tendency to, 54
Type II/III/IV – freezing point, 54
Type II/III/IV – freezing point buffer, 54
Type II/III/IV – friction, 54
Type II/III/IV – functional description, 37, 92, 186
Type II/III/IV – gel residue table, AMIL, 73
Type II/III/IV – glycol dehydrolysis, 54
Type II/III/IV – halogen reporting requirement, 54
Type II/III/IV – hard water composition, 54
Type II/III/IV – hard water stability, 54
Type II/III/IV – heated leading edge dry-out, 54
Type II/III/IV – HHET requirements, 54
Type II/III/IV – high viscosity sample, 54
Type II/III/IV – highest viscosity dilution, 54
Type II/III/IV – HOWV, 54
Type II/III/IV – hydrogen embrittlement, 54
Type II/III/IV – lead reporting requirement, 54
Type II/III/IV – licensee manufacturing, 54
Type II/III/IV – list of fluids, FAA/TC, 54, See list of fluids, FAA/TC; list of fluids (TC)
Type II/III/IV – list of qualified fluids, 54
Type II/III/IV – lot, 54
Type II/III/IV – LOUT, 54
Type II/III/IV – LOUT differs for dilutions, 92
Type II/III/IV – LOUT, obligation to report, 54
Type II/III/IV – low embrittling cadmium plate, 54
Type II/III/IV – Low Viscosity sample, 54
Type II/III/IV – LOWV, 144
Type II/III/IV – magnesium alloy, corrosion of, 54
Type II/III/IV – materials compatibility, 54
Type II/III/IV – maximum on-wing viscosity. See Type II/III/IV – HOWV
Type II/III/IV – mercury reporting requirement, 54
Type II/III/IV – minimum quantity (1 liter/m2), 92

Type II/III/IV – mixing with fluid from different manufacturers, 55
Type II/III/IV – mixture with other fluids, 55
Type II/III/IV – multiple location manufacturing, 55
Type II/III/IV – neat, 55, 144
Type II/III/IV – nitrate reporting requirement, 55
Type II/III/IV – noble metal coated wiring, 55
Type II/III/IV – non-glycol based fluids, 55
Type II/III/IV – non-Newtonian, 55
Type II/III/IV – overnight exposure to dry air. See Type II/III/IV – exposure to dry air
Type II/III/IV – packaging, 55
Type II/III/IV – pavement compatibility, 55
Type II/III/IV – periodic tests, 55
Type II/III/IV – pH, 55
Type II/III/IV – phosphorus reporting requirement, 55
Type II/III/IV – polycarbonate, effect on. See Type II/III/IV – effect on transparent plastics
Type II/III/IV – preproduction tests, 55
Type II/III/IV – pseudoplastic, 55
Type II/III/IV – qualification reports, 55
Type II/III/IV – qualification, initial, 55
Type II/III/IV – qualification, periodic re-, 55
Type II/III/IV – quality assurance, 55
Type II/III/IV – quality control, 186
Type II/III/IV – quantity, estimated, 129
Type II/III/IV – quantity, estimated – by aircraft type, 129
Type II/III/IV – reaction, exothermic, 55
Type II/III/IV – re-approval, 55
Type II/III/IV – refractive index, 55
Type II/III/IV – rejection, 55
Type II/III/IV – removal from cockpit windows, 92, 189
Type II/III/IV – resampling, 55
Type II/III/IV – residue. See Type II/III/IV residue; Type II/IV residue
Type II/III/IV – runway concrete scaling, 55
Type II/III/IV – same ingredients, 55
Type II/III/IV – sample selection, 55, See also HOT, process to obtain – sample selection
Type II/III/IV – sample selection considerations, 73
Type II/III/IV – shear degradation, 186
Type II/III/IV – shear stress, 55
Type II/III/IV – shear stress, effect on apparent viscosity, 55
Type II/III/IV – shear thinnning, 55, 186
Type II/III/IV – silver coated wiring, 55
Type II/III/IV – slipperiness, 55
Type II/III/IV – specific gravity, 55
Type II/III/IV – storage stability, 55
Type II/III/IV – storage stability waived, 55
Type II/III/IV – storage stability, cold, 55
Type II/III/IV – storage, long term, 55
Type II/III/IV – stress-corrosion resistance, 55
Type II/III/IV – subcontractor manufacturing, 55
Type II/III/IV – successive dry out and rehydration test, 55
Type II/III/IV – sulfur reporting requirement, 55
Type II/III/IV – surface tension, 56
Type II/III/IV – switches, defective, 56
Type II/III/IV – technical requirements, 56
Type II/III/IV – temperature cycling, 56
Type II/III/IV – thermal stability, accelerated aging, 56
Type II/III/IV – thermal stability, thin film, 56
Index

Type II/III/IV – thickened fluid, 56
Type II/III/IV – thickness application, sufficient, 92
Type II/III/IV – titanium corrosion resistance, 56
Type II/III/IV – TOD, 56
Type II/III/IV – toxicity, 56
Type II/III/IV – trace contaminants, 56
Type II/III/IV – U.S. Military procurement, 56
Type II/III/IV – undiluted fluid, 56
Type II/III/IV – use as deicing fluid – residue inspection and cleaning program required, 92
Type II/III/IV – use in first-step of two-step process – residue inspection and cleaning program required, 92
Type II/III/IV – use in one-step deicing – residue inspection and cleaning program required, 92
Type II/III/IV – use on aircraft. See Type II/III/IV commercialization condition
Type II/III/IV – viscosity limits, 56
Type II/III/IV – viscosity measurement, 56
Type II/III/IV – water loss, 92
Type II/III/IV – wing anti-ice system OFF on ground, 189
Type II/III/IV – wiring, defective, 56
Type II/III/IV – WSET limits, 56
Type II/III/IV 50/50 – cold soaked wing, do not used for, 92
Type II/III/IV 50/50 – tolerance on fluid/water mixtures, 92
Type II/III/IV 75/25 – tolerance on fluid/water mixtures, 92
Type II/III/IV aircraft operational considerations. See also aerodynamic effect of fluids – performance adjustments
Type II/III/IV aircraft operational considerations – aircraft attitude, 179
Type II/III/IV aircraft operational considerations – flightcrew briefing, 179
Type II/III/IV aircraft operational considerations – increased takeoff speed, 179
Type II/III/IV aircraft operational considerations – mass decrease, 179
Type II/III/IV aircraft operational considerations – rotation speed and rate, 179
Type II/III/IV aircraft operational considerations – stick force, 179
Type II/III/IV AMS1428/1, 57
Type II/III/IV AMS1428/2, 58
Type II/III/IV commercialization condition – FAA/Transport Canada list of fluids, 73
Type II/III/IV commercialization condition – field spray test, 73
Type II/III/IV commercialization condition – HOT guideline, have a, 73
Type II/III/IV contamination by RDP on aircraft, 144
Type II/III/IV contamination by RDP on aircraft – activation of thrust reversers, 189
Type II/III/IV contamination by RDP on aircraft – by jet blast from other aircraft, 144
Type II/III/IV contamination by RDP on aircraft – during taxi, 144
Type II/III/IV contamination by RDP on aircraft – jet blast from other aircraft, 189
Type II/III/IV contamination by RDP on aircraft – spray from nose gear, 189
Type II/III/IV contamination by RDP on aircraft – while landing, 144
Type II/III/IV coverage, 171
Type II/III/IV degradation – chemical contamination, 144
Type II/III/IV degradation – chemical contamination – corrosion in storage vessel, 171, 189
Type II/III/IV degradation – chemical contamination – galvanic corrosion in storage vessel, 171
Type II/III/IV degradation – chemical contamination – leaky tank covers, 171
Type II/III/IV degradation – chemical contamination – mislabeled equipment, 171
Type II/III/IV degradation – chemical contamination – unintended transfer, 171
Type II/III/IV degradation – chemical contamination – unlabeled equipment, 171
Type II/III/IV degradation – excessive shearing, 171
Type II/III/IV degradation – excessive shearing – nozzles, 171
Type II/III/IV degradation – excessive shearing – partially open valve, 172
Type II/III/IV degradation – excessive shearing – pumps, 144, 172
Type II/III/IV degradation – excessive shearing – sharp bends in piping, 144
Type II/III/IV degradation – exposure to alkali organic salt RDP, 189
Type II/III/IV degradation – exposure to alkali organic salts, 144, 189
Type II/III/IV degradation – exposure to RDP, 144
Type II/III/IV degradation – exposure to UV light, 172
Type II/III/IV degradation – forced air, 104
Type II/III/IV degradation – heating, 92, 186, 189
Type II/III/IV degradation – heating – oxidation, 144, 172
Type II/III/IV degradation – heating – water loss, 144, 172
Type II/III/IV degradation – improper storage, 186
Type II/III/IV degradation – water loss, 92
Type II/III/IV dehydration. See Type II/III/IV degradation – water loss
Type II/III/IV failure criteria, 76
Type II/III/IV forced air application, 143, 144
Type II/III/IV Glycol (Conventional and Non-conventional) based fluid, 57, 58
Type II/III/IV Glycol (Conventional) based fluid, 57, 58
Type II/III/IV Glycol (Non-conventional) based fluid, 57, 58
Type II/III/IV manufacturer. See fluid manufacturer
Type II/III/IV name change upon reformulation, 73
Type II/III/IV name, experimental, 73
Type II/III/IV name, final commercial – date due May 01, 73
Type II/III/IV name, new, 73
Type II/III/IV nozzle sample procedure, 144
Type II/III/IV purchase documents, 57, 58
Type II/III/IV qualification. See ARP5718B
Type II/III/IV quality control – viscosity, 144
Type II/III/IV residual fluid – on trailing edge in flight, 144
Type II/III/IV residue, 93, 180, 190
Type II/III/IV residue check, 186
Type II/III/IV residue cleaning, 92, 189
Type II/III/IV residue cleaning – application of corrosion inhibitors to areas cleaned, 189
Type II/III/IV residue cleaning – lubrication of areas cleaned, 189
Type II/III/IV residue detection, 92
Type II/III/IV residue cleaning program, 92
Type II/III/IV residue detection, 92, See also Type II/IV residue detection
Type II/III/IV residue formation, 56, 179, 190, See also Type II/IV residue formation
Type II/III/IV residue formation – conditions conducive to, 92
Type II/III/IV residue formation – first step application of Type II/III/IV in two-step application, 56
Type II/III/IV residue formation – no takeoff and no precipitation after fluid application, 92
Type II/III/IV residue formation – one-step application of Type II/III/IV, 56
Type II/III/IV residue formation – role of RDP alkali organic salts, 190
Type II/III/IV residue formation – Type I to alleviate, 93, 190
Type II/III/IV residue formation – use of Type II/III/IV without Type I, 93, 190
Type II/III/IV residue formation test. See Type II/III/IV – successive dry out and rehydration test
Type II/III/IV residue in aerodynamically quiet areas, 56
Type II/III/IV residue in cavities, 56
Type II/III/IV residue in gaps, 56
Type II/III/IV residue inspection, 93, 190
Type II/III/IV residue inspection – according to AMM, 190
Type II/III/IV residue inspection – auxiliary power unit bay, 190
Type II/III/IV residue inspection – bilge area of the tail cone, 190
Type II/III/IV residue inspection – control linkages, 190
Type II/III/IV residue inspection – control tabs, 190
Type II/III/IV residue inspection – horizontal stabilizer rear spar, 190
Type II/III/IV residue inspection – vertical stabilizer, 190
Type II/III/IV residue inspection – wing leading edge devices, 190
Type II/III/IV residue inspection – wing rear spar, 190
Type II/III/IV residue table, AMIL, 73
Type II/III/IV residue, dried, 179, 190
Type II/III/IV residue, effect of – aileron jamming, 179
Type II/III/IV residue, effect of – drain hole clogging, 180
Type II/III/IV residue, effect of – elevator jamming, 180
Type II/III/IV residue, effect of – flap jamming, 180
Type II/III/IV residue, effect of – flight control restrictions, 93, 180, 186, 190
Type II/III/IV residue, effect of – lift reduction, 180
Type II/III/IV residue, effect of – stall speed increase, 180
Type II/III/IV residue, guidance, Boeing, 190
Type II/III/IV residue, guidance, EASA, 180
Type II/III/IV residue, rehydrated, 180, 190
Type II/III/IV sample selection considerations, 73
Type II/III/IV sampling procedure, 144

Type II/III/IV thickness v time test, 33
Type II/III/IV viscosity measurement method, 58
Type II/III/IV viscosity, fluid manufacturer methods, 147
Type II/IV residue – guidance (FAA), 144
Type II/IV residue – guidance (TC), 172
Type II/IV residue cleaning, 144, 172
Type II/IV residue cleaning with aircraft manufacturer recommended cleaning agent, 144
Type II/IV residue cleaning with high pressure washing, 172
Type II/IV residue cleaning with hot Type I and or water mix, 144
Type II/IV residue detection, 144
Type II/IV residue formation. See also Type II/III/IV residue formation
Type II/IV residue formation – conditions conducive to, 172
Type II/IV residue formation – diluted Type II/IV v neat Type II/IV, 144, 172
Type II/IV residue formation – European practices conducive to, 144, 172
Type II/IV residue formation – hot Type I or hot water to alleviate, 172
Type II/IV residue formation – North American practices preventing, 144, 172
Type II/IV residue formation – Type II v Type IV, 144
Type II/IV residue formation – Type II/IV without hot water or Type I, 144, 186
Type II/IV residue formation – Type II/IV without hot water or Type I, 172
Type II/IV residue in aerodynamically quiet areas, 144, 172, 186
Type II/IV residue in and around gaps between stabilizers, elevators, tabs, hinges, 144, 172
Type II/IV residue in crevices, 144, 172
Type II/IV residue in drain holes, 172
Type II/IV residue inspection, 144, 172
Type II/IV residue inspection between flaps and wing, 172
Type II/IV residue inspection frequency, 144, 172
Type II/IV residue inspection of actuators, 144
Type II/IV residue inspection of drain holes, 172
Type II/IV residue inspection of flight control bays, 144, 172
Type II/IV residue, effect of – on non-powered control surfaces, 144, 172
Type II/IV residue, effect of – on powered control surfaces, 172
Type II/IV residue, effect of – restricted control surface movement, 144, 172
Type II/IV residue, lubrication of areas affected by, 144, 172
Type II/IV, heated – no reduction in HOT, 144
Type III. See also Type II/III/IV
Type III 50/50 – HHET determine and report, 56
Type III 50/50 – WSET determine and report, 56
Type III 75/25 – HHET determine and report, 56
Type III 75/25 – WSET determine and report, 56
Type III color – bright yellow, 56
Type III neat – HHET 2 hours minimum, 56
Type III neat – WSET 20 minutes minimum, 56
Type III residue – monitoring recommended, 172
Type IV. See also Type II/III/IV; Type II/IV
wingtip devices – scimitar, split – representative surface, use of, 162
wingtip devices – sharklets, 145, 162
wingtip devices – strakes, 145, 162
wingtip devices – winglets, 145, 162
winter operations, 133
winter operations, guidance (Boeing), 190
winter operations, guidance (Boeing) – for flightcrews, 190
winter operations, guidance (Boeing) – for maintenance crews, 190
Winter Weather Nowcasting System, 93
WSDMM, 94
WSET – air temperature, 40
WSET – calibration, 40
WSET – definition, 65, 74, 172
WSET – description, 40
WSET – failure criterion, 40
WSET – failure zone, 40
WSET – fluid preparation, 40
WSET – fluid sheared, 40
WSET – fluid temperature, 40
WSET – report, 40
WSET – reproducibility, 40
WSET – reproducibility – Type I (20%), 40
WSET – reproducibility – Type II/III/IV (10%), 40
WSET – spray equipment, 40
WSET – test chamber, 40
WSET – test description, 40
WSET – test plate, 40
WSET – test plate cleanliness, 40
WSET – water droplet size, 40
WSET, Type I – 3 minutes minimum, 47
WSET, Type II 50/50 – 5 minutes minimum, 56
WSET, Type II 75/25 – 20 minutes minimum, 56
WSET, Type II neat – 30 minutes minimum, 56
WSET, Type III 50/50 – determine and report, 56
WSET, Type III 75/25 – determine and report, 56
WSET, Type III neat – 20 minutes minimum, 56
WSET, Type IV 50/50 – 5 minutes minimum, 57
WSET, Type IV 75/25 – 20 minutes minimum, 57
WSET, Type IV neat – 80 minutes minimum, 57
XAC MA-60 dimensions, 129
Yakolev YAK-40/42D dimensions, 129
zone sampler, 87
The information in this document is not to be taken as a warranty or representation for which Jacques Leroux, The Dow Chemical Company and its subsidiaries assume legal responsibility nor as a permission to practice any patented invention without a license. It is offered solely for your consideration, investigation and verification.

This Guide to Aircraft Ground Deicing (Issue 6 – January 2018) replaces all previously issued versions of the Guide to Aircraft Ground Deicing. Please destroy all previously issued versions.

© 2018 Jacques Leroux