If you wish to contribute or participate in the discussions about articles you are invited to join SKYbrary as a registered user

Altimeter Setting Procedures

From SKYbrary Wiki
Article Information
Category: Level Bust Level Bust
Content source: SKYbrary About SKYbrary
Content control: EUROCONTROL EUROCONTROL

Description

The aircraft altimeter barometric sub-scale must be set to the appropriate setting for the phase of flight. These are:

  • Flight level. Standard pressure setting (1013 hPa) is set when flying by reference to flight levels above the transition altitude;
  • Altitude. Regional or airfield pressure setting (QNH) is set when flying by reference to altitude above mean sea level below the transition level;
  • Height. Altimeter pressure setting indicating height above airfield or touchdown (QFE) is set when approaching to land at airfield where this procedure is in use.

Failure to set the appropriate barometric sub-scale pressure setting may result in a significant deviation from the cleared altitude or Flight Level

altimeter setting
Altimeter Setting

Types of Altimeter Setting Error

  • The pilot mishears the transmitted pressure setting and sets an incorrect figure.
  • The pilot hears the transmitted pressure setting correctly but fails to set it or mis-sets it.
  • The pilot fails to change the pressure setting at the appropriate point in a departure, climb, descent or approach.

Effects

Defences

Effective SOPs contained in company flight operations manuals which specify appropriate procedures for the setting and cross-checking of altimeter barometric sub scales.

Typical Scenarios

  • A pilot fails to ensure that standard pressure is set when passing the transition altitude in the climb, and levels the aircraft at a flight level which differs from the cleared level by an amount dependent on the difference between the QNH and 1013 hPa.
  • A pilot fails to set QNH when passing the transition level in the descent and levels the aircraft at an altitude which differs from the cleared altitude by an amount dependent on the difference between QNH and 1013 hPa.
  • A pilot un-used to landing with QFE set, does not remember that the altimeter now indicates height above airfield elevation or touch-down zone.

Solutions

  • The existence of appropriate SOPs for the setting and cross-checking of altimeter sub scales and their strict observance is the only universal primary solution to eliminate incorrect altimeter setting.
  • Use of the aircraft radio altimeter to monitor the aircraft proximity with the ground can help to improve situational awareness provided that the flight crew are generally familiar with the terrain over which they are flying;
  • GPWS/TAWS provide a safety net against CFIT and, in the case of TAWS Class 'A' with its option of a simple terrain mapping display, it can also be used to directly improve routine situational awareness.

Related Articles

Accidents and Incidents

Events in which the incorrect altimeter pressure setting was either a cause or contributing factor in a Level Bust or CFIT/near CFIT:

  • B738, en-route, Arabian Sea, 2010 (LOC LB HF) (On 26 May 2010, a Boeing 737-800 being operated by Air India Express on a passenger flight from Dubai UAE to Pune, India was in the cruise at night at FL370 near PARAR when a sudden high speed descent occurred without ATC clearance during which nearly 7000 feet of altitude was lost in a little over 30 seconds before recovery was made. The remainder of the flight was uneventful. Despite the abnormal pitch, pitch change and ‘g’ variation, none of the 113 occupants had been injured.)
  • B734 / MD81, en-route, Romford UK, 1996 (LB LOS HF) (On 12 November 1996, a B737-400 descended below its assigned level in one of the holding patterns at London Heathrow, in IMC, to within 100 feet vertically and between 680 and 820 metres horizontally of a MD-81 at its correct level. Neither aircraft was fitted with ACAS.)
  • B733, vicinity Helsinki Finland, 2008 (LB CFIT HF) (On 26 March 2008, a Ukraine International Airlines’ Boeing 737-300 being vectored by ATC to the ILS at destination Helsinki in IMC descended below its cleared altitude and came close to a telecommunications mast. ATC noticed the deviation and instructed a climb. The investigation attributed the non-compliance with the accepted descent clearance to the failure of the flight crew to operate in accordance with SOPs. The ability of ATC safety systems as installed and configured at the time of the occurrence was also noted.)
  • A310, vicinity Birmingham UK, 2006 (LB CFIT HF) (On 24 November 2006, an A310 descended significantly below cleared altitude during a radar vectored approach positioning, as a result of the flight crew's failure to set the QNH, which was unusually low.)
  • A319 / A321, en-route, west north west of Geneva, Switzerland 2011 (LOS LB HF) (On 6 August 2011 an Easyjet Airbus A319 on which First Officer Line Training was in progress exceeded its cleared level during the climb after a different level to that correctly read back was set on the FMS. As a result, it came into conflict with an Alitalia A321 and this was resolved by responses to coordinated TCAS RAs. STCA alerts did not enable ATC resolution of the conflict and it was concluded that a lack of ATC capability to receive Mode S EHS DAPs - since rectified - was a contributory factor to the outcome.)
  • … further results

"Pressure altimeter setting error" is not in the list of possible values (Accepted ATC Clearance not followed, SID bust, Clearance readback error undetected, TCAS RA response, Manual flight) for this property.

  • D328, vicinity Manchester UK, 2006 (CFIT HF) (On 18 January 2006, a Dornier 328 on descent into Manchester UK, avoided CFIT only by response to EGPWS following failure to capture the ILS Glideslope and a high rate of descent in IMC.)
  • EC55, en-route, Hong Kong China, 2003 (HF CFIT) (On 26 August 2003, at night, a Eurocopter EC155, operated by Hong Kong Government Flight Service (GFS), performing a casualty evacuation mission (casevac), impacted the elevated terrain in Tung Chung Gap near Hong Kong International airport.)
  • MD83, vicinity Paris Orly France, 1997 (CFIT HF) (On 23 November 1997, a McDonald Douglas MD 83 being operated by AOM French Airlines on a scheduled passenger flight from Marseille to Paris Orly made an unintended premature descent almost to terrain impact at 4nm from the destination runway in day IMC before a go around was commenced. A subsequent approach was uneventful and a normal landing ensued. There was no damage to the aircraft or injury to the occupants.)
  • DHC6, En route, Arghakhanchi Western Nepal, 2014 (CFIT FIRE HF WX) (On 16 February 2014 a Nepal Airlines DHC6 attempting a diversion on a VFR flight which had encountered adverse weather impacted terrain at an altitude of over 7000 feet in a mountainous area after intentionally entering cloud following a decision to divert due to weather incompatible with VFR. The aircraft was destroyed and all 18 occupants were killed. The Investigation attributed the accident to loss of situational awareness by the aircraft commander and inadequate crew co-operation in responding to the prevailing weather conditions.)
  • AT45, vicinity Sienajoki Finland, 2007 (LOC CFIT HF) (On 1 January 2007, the crew of a ATR 42-500 carried out successive night approaches into Seinajoki Finland including three with EGPWS warnings, one near stall, and one near loss of control, all attributed to poor flight crew performance including use of the wrong barometric sub scale setting.)
  • … further results

"Pressure altimeter setting error" is not in the list of possible values (Into water, Into terrain, Into obstruction, No Visual Reference, Lateral Navigation Error, Vertical navigation error, VFR flight plan, IFR flight plan) for this property.

Further Reading

ICAO

  • Doc 8168 (PANS-OPS), Volume I, Flight Procedures - Part VI - Altimeter Setting Procedures - Chapter 3.
  • ICAO Video: Altimetry - Basic Principles;

Flight Safety Foundation ALAR Toolkit

EUROCONTROL Level Bust Toolkit

Airbus Briefing Notes